Piping allows us to break down complex tasks into manageable chunks that can be written and tested one after another. There are several powerful commands in the tidyverse as part of the dplyr package that can help us group, filter, select, mutate and summarise datasets. With this small set of commands we can use piping to convert massive datasets into simple and useful results.
Using the pipe %>% command, we can feed the results from one command into the next command making for reusable and easy to read code.
how piping works
Note
The pipe command we are using %>% is from the magrittr package which is installed alongside the tidyverse. Recently R introduced another pipe |> which offers very similar functionality and tutorials online might use either. The examples below use the %>% pipe.
Let’s look at an example of using the pipe on the PISA_2022 table to calculate the best performing OECD countries for maths PV1MATH by gender ST004D01T:
line 1 passes the whole PISA_2022 dataset and pipes it into the next line using %>%
2
line 2 filters out any results that are from non-OECD countries by finding all the rows where OECD equals == “Yes”, this is then piped to the next line
3
line 3 groups the data by country CNT and by student gender ST004D01T, this is then piped to the next line
4
line 4-6 the summarise command performs a calculation on the country and gender groupings returning three new columns, each command is described by code on a new line and separated by a comma: the mean value for maths mean_maths, the standard deviation sd_maths, and a column telling us how many students were in each grouping using the n() which returns the number of rows in a group. These new columns and the grouping columns are then piped to the next line, all other columns are dropped
5
line 7 filters out any gender ST004D01T that is NA. First is finds all the students that have NA as their gender by using is.na(ST004D01T), then it NOTs/flips the result using the exclamation mark !, giving those students who don’t have their gender set to NA. The filtered data is then piped to the next line
6
line 8, finally we arrange/sort the results in descending order by the mean_maths column. The default for arrange is ascending order, leave out the desc( ) for the numbers to be ordered in the opposite way.
# A tibble: 74 × 5
# Groups: CNT [37]
CNT ST004D01T mean_maths sd_maths students
<fct> <fct> <dbl> <dbl> <int>
1 Japan Male 540. 99.0 2856
2 Korea Male 534. 112. 3325
3 Japan Female 531. 88.1 2904
4 Korea Female 528. 99.1 3129
5 Estonia Male 515. 87.4 3272
6 Switzerland Male 511. 99.3 3540
7 Estonia Female 510. 81.5 3120
8 Czech Republic Male 502. 100. 4232
9 Switzerland Female 501. 90.9 3289
10 Austria Male 500. 94.5 3110
11 Poland Male 499. 94.2 3002
12 Ireland Male 499. 83.6 2814
13 Belgium Male 498. 100. 4030
14 Netherlands Male 497. 109. 2652
15 Czech Republic Female 497. 91.9 4228
16 Australia Male 492. 103. 6858
17 Poland Female 491. 82.4 3009
18 Belgium Female 490. 92.0 4256
19 United Kingdom Male 489. 98.2 6575
20 Canada Male 489. 97.6 11654
21 Hungary Male 488. 96.8 3089
22 Latvia Male 488. 82.7 2637
23 Ireland Female 487. 73.9 2755
24 Spain Male 486. 87.3 15561
25 Italy Male 485. 92.5 5193
26 Germany Male 485. 97.0 3123
27 Netherlands Female 484. 103. 2394
28 Denmark Male 484. 86.4 3134
29 New Zealand Male 483. 105. 2388
30 Sweden Male 483. 99.0 3104
31 Austria Female 482. 86.6 3041
32 Australia Female 481. 92.3 6557
33 Sweden Female 481. 89.7 2968
34 Portugal Male 481. 91.4 3411
35 Canada Female 480. 88.1 11377
36 Latvia Female 477. 75.8 2736
37 Finland Female 476. 89.3 4995
38 United Kingdom Female 476. 91.2 6397
39 Spain Female 475. 81.3 15239
40 Lithuania Male 475. 89.9 3600
41 Slovenia Female 475. 81.8 3137
42 Finland Male 475. 96.1 5244
43 Hungary Female 473. 86.4 3109
44 Denmark Female 473. 79.8 3066
45 France Male 472. 98.6 3364
46 New Zealand Female 471. 91.1 2285
47 Germany Female 471. 90.6 2993
48 Portugal Female 471. 84.4 3382
49 Slovenia Male 470. 92.0 3584
50 Lithuania Female 470. 82.3 3657
51 Slovak Republic Female 469. 98.5 2736
52 Norway Female 468. 86.8 3213
53 Norway Male 468. 99.6 3398
54 Slovak Republic Male 468. 102. 3088
55 United States Male 467. 101. 2312
56 Italy Female 466. 82.0 5359
57 France Female 464. 88.5 3406
58 Israel Male 463. 116. 2892
59 Iceland Male 460. 91.8 1728
60 Iceland Female 456. 82.6 1632
61 United States Female 456. 88.2 2235
62 Türkiye Male 454. 92.7 3689
63 Israel Female 452. 94.7 3359
64 Türkiye Female 450. 85.5 3561
65 Greece Male 438. 86.1 3217
66 Chile Male 437. 81.5 3343
67 Greece Female 430. 78.1 3186
68 Chile Female 420. 75.9 3145
69 Mexico Male 400. 71.4 2970
70 Colombia Male 396. 75.7 3790
71 Costa Rica Male 392. 69.2 3107
72 Mexico Female 390. 66.4 3318
73 Colombia Female 386. 70.6 4014
74 Costa Rica Female 376. 62.9 3006
Across the top few countries, Males get a slightly better maths score PV1MATH than Females, other scores are available, please read ?@sec-PV to find out more about the limitations of using a “PV” value.
Note
we met the assignment command earlier <-. Within the tidyverse commands we use the equals sign instead =.
The commands we have just used come from a package within the tidyverse called dplyr, let’s take a look at what they do:
command
purpose
example
select
reduce the dataframe to the fields that you specify
select(<field>, <field>, <field>)
filter
get rid of rows that don’t meet one or more criteria
filter(<field> <comparison>)
group
group fields together to perform calculations
group_by(<field>, <field>))
mutate
add new fields or change values in current fields
mutate(<new_field> = <field> / 2)
summarise
create summary data optionally using a grouping command
summarise(<new_field> = max(<field>))
arrange
order the results by one or more fields
arrange(desc(<field>))
Note
If you want to explore more of the functions of dplyr, take a look at the helpsheet
Adjust the code above to find out the lowest performing countries for reading PV1READ by gender that are not in the OECD
# A tibble: 613,744 × 4
CNT ESCS ST004D01T ST003D02T
<fct> <dbl> <fct> <fct>
1 Albania 1.11 Female May
2 Albania -3.05 Male February
3 Albania -0.187 Male August
4 Albania -3.22 Female July
5 Albania -1.05 Female January
6 Albania 1.09 Male May
7 Albania -0.762 Male May
8 Albania -1.02 Female December
9 Albania -1.17 Female August
10 Albania 0.286 Female September
11 Albania -1.98 Male October
12 Albania 0.063 Male April
13 Albania -0.170 Male May
14 Albania -2.58 Male August
15 Albania -1.18 Female July
16 Albania -0.596 Female February
17 Albania -1.09 Male March
18 Albania 0.746 Female June
19 Albania -0.885 Female March
20 Albania -1.63 Female August
21 Albania -0.334 Male October
22 Albania -2.10 Male January
23 Albania -1.10 Male October
24 Albania -1.04 Female February
25 Albania NA Female May
26 Albania 0.364 Female June
27 Albania -2.75 Female August
28 Albania -0.119 Female January
29 Albania -1.20 Male March
30 Albania -0.425 Female February
31 Albania -0.150 Male May
32 Albania -1.71 Male July
33 Albania -1.67 Male December
34 Albania -1.01 Female April
35 Albania -1.07 Female January
36 Albania -0.420 Male October
37 Albania -1.78 Female October
38 Albania -0.222 Female March
39 Albania -1.18 Female March
40 Albania 0.352 Female September
41 Albania -0.0602 Female March
42 Albania 0.675 Male February
43 Albania 0.408 Female September
44 Albania -0.872 Male August
45 Albania 0.533 Male March
46 Albania 0.263 Female March
47 Albania 0.336 Female June
48 Albania NA Male May
49 Albania -0.469 Male May
50 Albania -0.716 Female May
51 Albania -0.540 Female July
52 Albania -1.72 Female December
53 Albania 0.660 Female August
54 Albania -0.858 Male April
55 Albania -2.41 Male June
56 Albania -1.94 Female November
57 Albania -1.22 Male November
58 Albania -1.72 Male June
59 Albania -2.44 Male May
60 Albania 0.672 Male July
61 Albania NA Male August
62 Albania -1.58 Female January
63 Albania -1.57 Female January
64 Albania 0.256 Female August
65 Albania NA Male January
66 Albania 0.641 Male March
67 Albania -1.05 Female June
68 Albania 1.10 Female August
69 Albania -0.0282 Female October
70 Albania -1.57 Male June
71 Albania -1.34 Female June
72 Albania NA Female October
73 Albania 0.358 Male October
74 Albania -0.0888 Male September
75 Albania 0.877 Female May
76 Albania NA Male July
77 Albania 1.14 Female September
78 Albania -1.18 Male May
79 Albania -1.18 Male September
80 Albania 1.09 Female May
81 Albania 0.991 Male June
82 Albania -0.083 Male August
83 Albania -0.901 Female March
84 Albania NA Male June
85 Albania -0.344 Male December
86 Albania 0.381 Male December
87 Albania 0.416 Male October
88 Albania -0.171 Male November
89 Albania -1.62 Male April
90 Albania NA Male June
91 Albania 0.652 Female April
92 Albania 0.592 Male January
93 Albania -0.686 Female March
94 Albania NA Male September
95 Albania -1.08 Male August
96 Albania 1.04 Male April
97 Albania -0.987 Female May
98 Albania -2.58 Male December
99 Albania -1.26 Female April
100 Albania 2.33 Female May
101 Albania -0.539 Female October
102 Albania -0.912 Male October
103 Albania -1.05 Female September
104 Albania 0.172 Female September
105 Albania -1.76 Male June
106 Albania 0.508 Male June
107 Albania -1.74 Female October
108 Albania NA Male January
109 Albania -1.10 Female June
110 Albania NA Male July
111 Albania -1.52 Male June
112 Albania -1.77 Female March
113 Albania 0.796 Male February
114 Albania 0.720 Male October
115 Albania -2.30 Male September
116 Albania -2.15 Female June
117 Albania -0.294 Female December
118 Albania -0.512 Male February
119 Albania -1.21 Male December
120 Albania -1.70 Female March
121 Albania -1.33 Female December
122 Albania -1.75 Female March
123 Albania -0.559 Male July
124 Albania 1.16 Male September
125 Albania -2.56 Female December
126 Albania 0.811 Female December
127 Albania -1.17 Male May
128 Albania -1.53 Female September
129 Albania 0.893 Female August
130 Albania -0.664 Female September
131 Albania 0.328 Male March
132 Albania NA Male September
133 Albania -1.77 Female November
134 Albania 1.12 Male October
135 Albania -0.172 Female May
136 Albania -0.608 Female August
137 Albania -1.80 Male July
138 Albania -1.30 Male May
139 Albania -0.631 Female May
140 Albania -2.02 Female August
141 Albania -0.403 Female October
142 Albania -1.92 Male December
143 Albania NA Male October
144 Albania -0.605 Male August
145 Albania NA Male January
146 Albania -1.32 Female June
147 Albania 0.268 Male December
148 Albania -0.545 Male September
149 Albania -1.61 Female March
150 Albania -3.23 Male February
151 Albania 0.996 Male March
152 Albania -0.745 Female December
153 Albania -0.324 Male June
154 Albania -2.23 Female November
155 Albania -1.67 Female January
156 Albania 0.314 Female March
157 Albania -0.838 Male May
158 Albania -1.35 Male September
159 Albania -2.40 Female February
160 Albania -1.76 Female April
161 Albania -3.22 Female November
162 Albania -0.630 Female April
163 Albania 0.529 Male June
164 Albania -0.716 Male June
165 Albania 1.03 Female November
166 Albania -0.644 Male May
167 Albania -1.09 Female July
168 Albania 0.136 Male October
169 Albania 0.160 Male October
170 Albania -1.02 Male January
171 Albania -0.335 Male December
172 Albania -1.82 Female August
173 Albania 0.859 Male December
174 Albania -0.262 Male August
175 Albania -0.384 Female April
176 Albania -1.17 Female February
177 Albania -1.49 Male April
178 Albania -1.51 Male April
179 Albania -2.14 Male December
180 Albania -0.33 Male October
181 Albania -0.514 Female March
182 Albania -1.25 Male July
183 Albania NA Male January
184 Albania 1.13 Male February
185 Albania 0.817 Female June
186 Albania -0.583 Female June
187 Albania -1.40 Female November
188 Albania -0.981 Female February
189 Albania 0.170 Female April
190 Albania -1.92 Female February
191 Albania -2.27 Male September
192 Albania -2.55 Male May
193 Albania -1.87 Female September
194 Albania -2.00 Male May
195 Albania 0.594 Female May
196 Albania -1.75 Male July
197 Albania -1.88 Male July
198 Albania -0.723 Male November
199 Albania -0.608 Male July
200 Albania -0.942 Female March
201 Albania 0.814 Male July
202 Albania -0.804 Female June
203 Albania -1.24 Female May
204 Albania -1.81 Female September
205 Albania -0.922 Male April
206 Albania -1.16 Male October
207 Albania 0.764 Female March
208 Albania 0.836 Female June
209 Albania -1.24 Male January
210 Albania 0.217 Male April
211 Albania -2.11 Female September
212 Albania 0.0088 Female May
213 Albania -1.97 Male February
214 Albania -3.09 Male December
215 Albania NA Male May
216 Albania -1.96 Female December
217 Albania -1.08 Female December
218 Albania -0.853 Male May
219 Albania NA Male April
220 Albania -1.53 Female June
221 Albania -1.02 Female December
222 Albania 0.0068 Male June
223 Albania 1.15 Female December
224 Albania -1.75 Female December
225 Albania -0.0901 Female September
226 Albania -0.113 Male May
227 Albania -3.80 Female March
228 Albania -2.52 Male October
229 Albania 0.565 Female October
230 Albania -1.35 Male April
231 Albania -0.390 Male June
232 Albania -1.98 Female December
233 Albania -1.89 Female October
234 Albania NA Female January
235 Albania 0.195 Male October
236 Albania -1.47 Male May
237 Albania 0.801 Female November
238 Albania 0.229 Male January
239 Albania NA Male July
240 Albania 0.265 Male February
241 Albania -2.26 Female May
242 Albania -2.35 Male January
243 Albania -2.84 Female February
244 Albania -1.90 Female July
245 Albania -2.09 Female December
246 Albania -1.97 Male October
247 Albania 1.00 Female December
248 Albania 0.614 Female December
249 Albania -1.32 Male November
250 Albania -0.404 Female May
251 Albania -1.13 Male June
252 Albania -0.743 Female March
253 Albania -0.0284 Female April
254 Albania -0.980 Male November
255 Albania -0.108 Male April
256 Albania -0.508 Female August
257 Albania 0.0998 Female October
258 Albania -1.62 Male August
259 Albania -2.29 Male May
260 Albania 0.828 Male July
261 Albania -2.20 Female April
262 Albania NA Male November
263 Albania 0.549 Male April
264 Albania -1.02 Female June
265 Albania NA Female October
266 Albania 0.405 Female February
267 Albania -0.546 Male January
268 Albania 1.02 Female March
269 Albania 0.623 Male July
270 Albania -1.76 Female October
271 Albania -0.560 Male June
272 Albania -2.24 Female July
273 Albania -0.830 Male June
274 Albania -1.63 Male January
275 Albania -0.958 Female January
276 Albania -0.216 Female March
277 Albania 1.19 Male June
278 Albania 0.412 Female July
279 Albania -2.00 Female September
280 Albania -0.851 Male January
281 Albania -1.65 Male November
282 Albania 0.801 Female February
283 Albania -0.593 Male July
284 Albania 0 Male April
285 Albania -1.03 Male January
286 Albania 0.338 Female August
287 Albania -1.58 Male September
288 Albania -2.05 Male September
289 Albania -1.42 Female December
290 Albania -1.23 Male March
291 Albania 0.214 Female March
292 Albania -0.0101 Male September
293 Albania -0.878 Male September
294 Albania -0.249 Female September
295 Albania -1.72 Female May
296 Albania 0.425 Male July
297 Albania -1.53 Male June
298 Albania -0.795 Male February
299 Albania 0.870 Female May
300 Albania 0.626 Female June
301 Albania -0.602 Male September
302 Albania -2.44 Female December
303 Albania 0.382 Male July
304 Albania -0.424 Male August
305 Albania -1.02 Male October
306 Albania -0.721 Male January
307 Albania -1.99 Female March
308 Albania -0.730 Male June
309 Albania NA Male April
310 Albania -1.15 Female August
311 Albania 1.10 Male October
312 Albania -1.39 Male June
313 Albania -2.61 Female May
314 Albania -2.22 Female July
315 Albania 0.674 Male August
316 Albania NA Female October
317 Albania 1.01 Male July
318 Albania -1.10 Female August
319 Albania -2.82 Female August
320 Albania -2.94 Female November
321 Albania -1.39 Male October
322 Albania -1.98 Female August
323 Albania 0.614 Female August
324 Albania NA Female March
325 Albania NA Female May
326 Albania -1.80 Male March
327 Albania -1.23 Male June
328 Albania 0.508 Female October
329 Albania -0.251 Male January
330 Albania 1.06 Male June
331 Albania -0.0118 Female November
332 Albania NA Male October
333 Albania 1.08 Female April
334 Albania -0.856 Female November
335 Albania 0.423 Female December
336 Albania 0.472 Male June
337 Albania -1.42 Male January
338 Albania -2.31 Female March
339 Albania 0.185 Female August
340 Albania -1.50 Male October
341 Albania -1.72 Male September
342 Albania -1.32 Male July
343 Albania -2.21 Female August
344 Albania -0.716 Female December
345 Albania -1.20 Male September
346 Albania 0.376 Male March
347 Albania NA Male February
348 Albania 0.773 Male August
349 Albania -1.22 Male May
350 Albania -0.488 Female May
351 Albania -1.19 Male January
352 Albania -1.87 Female March
353 Albania 0.442 Female May
354 Albania -0.754 Female May
355 Albania -0.633 Female September
356 Albania -0.338 Male June
357 Albania -0.0522 Male May
358 Albania -0.750 Male July
359 Albania -0.924 Male March
360 Albania 0.594 Female January
361 Albania 0.844 Male August
362 Albania -0.392 Female October
363 Albania -1.61 Female July
364 Albania -1.61 Male January
365 Albania -0.135 Male August
366 Albania -1.30 Female March
367 Albania -2.34 Male February
368 Albania 0.512 Male July
369 Albania -2.71 Female January
370 Albania -0.966 Female January
371 Albania NA Female December
372 Albania -0.925 Male June
373 Albania 0.868 Male March
374 Albania 0.366 Male July
375 Albania -0.518 Male September
376 Albania -1.80 Male March
377 Albania -1.32 Male May
378 Albania -0.0169 Male September
379 Albania -1.18 Female July
380 Albania -2.01 Female December
381 Albania -0.704 Female June
382 Albania -2.05 Male February
383 Albania -2.03 Male December
384 Albania -1.09 Female November
385 Albania -0.312 Male July
386 Albania 0.550 Male March
387 Albania 0.459 Male November
388 Albania -1.15 Female May
389 Albania -0.747 Female February
390 Albania 0.499 Male October
391 Albania 1.20 Male November
392 Albania -2.59 Male September
393 Albania -2.85 Male February
394 Albania -2.10 Female December
395 Albania NA Female April
396 Albania -1.63 Female August
397 Albania NA Male March
398 Albania -1.14 Female August
399 Albania NA Male May
400 Albania -1.68 Female November
401 Albania -0.302 Male September
402 Albania -2.47 Male March
403 Albania -0.340 Female February
404 Albania -1.51 Female May
405 Albania 0.0844 Female May
406 Albania -2.07 Female August
407 Albania -1.32 Male July
408 Albania -1.33 Male June
409 Albania -0.565 Male April
410 Albania NA Female September
411 Albania 0.996 Female April
412 Albania -0.289 Female January
413 Albania -2.14 Female August
414 Albania 0.0733 Female February
415 Albania 0.122 Male March
416 Albania -1.67 Female September
417 Albania -1.30 Female July
418 Albania -1.59 Male February
419 Albania -0.959 Female July
420 Albania -2.14 Male October
421 Albania -0.383 Female April
422 Albania -0.312 Female September
423 Albania -0.308 Female January
424 Albania -0.866 Male January
425 Albania NA Female March
426 Albania NA Female November
427 Albania -1.36 Female June
428 Albania -1.52 Male February
429 Albania -1.57 Female November
430 Albania -1.67 Male March
431 Albania -2.58 Male August
432 Albania -0.652 Male June
433 Albania -0.0924 Female March
434 Albania -1.11 Female August
435 Albania NA Male August
436 Albania -1.94 Female September
437 Albania 0.588 Male May
438 Albania -0.908 Male September
439 Albania 1.10 Male May
440 Albania -0.093 Female April
441 Albania 1.38 Male December
442 Albania -1.73 Male November
443 Albania -2.40 Male August
444 Albania -0.188 Female May
445 Albania -1.55 Male January
446 Albania 0.374 Female September
447 Albania -1.59 Male November
448 Albania -2.20 Female October
449 Albania -1.65 Male May
450 Albania -0.103 Female May
451 Albania -2.90 Female August
452 Albania -0.212 Female January
453 Albania 0.518 Female July
454 Albania -2.81 Female June
455 Albania 0.756 Female August
456 Albania -1.23 Male March
457 Albania -0.470 Female August
458 Albania -1.32 Female November
459 Albania 1.13 Female April
460 Albania -0.706 Female September
461 Albania 0.499 Male November
462 Albania -0.239 Male March
463 Albania -1.04 Male April
464 Albania -2.20 Female February
465 Albania -1.77 Male March
466 Albania 0.136 Female December
467 Albania 2.34 Male September
468 Albania 1.31 Female April
469 Albania -0.531 Male August
470 Albania -2.02 Female December
471 Albania 0.560 Male July
472 Albania -2.63 Female May
473 Albania 0.368 Female May
474 Albania -2.10 Female June
475 Albania 0.752 Female March
476 Albania -1.51 Female December
477 Albania 0.436 Male January
478 Albania -2.12 Female May
479 Albania -0.451 Male April
480 Albania 0.468 Male August
481 Albania -1.07 Male October
482 Albania -2.99 Female May
483 Albania -1.10 Female May
484 Albania -0.633 Female September
485 Albania -1.39 Female February
486 Albania 0.199 Male December
487 Albania 0.505 Female January
488 Albania 0.505 Male November
489 Albania -1.19 Male August
490 Albania 0.446 Female June
491 Albania -2.79 Female March
492 Albania 0.610 Male October
493 Albania -1.10 Female May
494 Albania -1.71 Male January
495 Albania -0.804 Female December
496 Albania 1.18 Male November
497 Albania -1.77 Female January
498 Albania -2.67 Male December
499 Albania -1.57 Female October
500 Albania -2.36 Female August
# ℹ 613,244 more rows
You might also be in the situation where you want to select everything but one or two fields, you can do this with the negative signal -, the below code returns all the fields exceptCNT and OECD:
PISA_2022 %>%select(-CNT, -OECD)
# A tibble: 613,744 × 82
CNTSCHID CNTSTUID REGION LANGTEST_QQQ ST003D02T ST003D03T ST004D01T
<dbl> <dbl> <fct> <fct> <fct> <fct> <fct>
1 800282 800001 Albania Albanian May 2006 Female
2 800115 800002 Albania Albanian February 2006 Male
3 800242 800003 Albania Albanian August 2006 Male
4 800245 800005 Albania Albanian July 2006 Female
5 800285 800006 Albania Albanian January 2006 Female
6 800172 800007 Albania Albanian May 2006 Male
7 800082 800008 Albania Albanian May 2006 Male
8 800274 800009 Albania Albanian December 2006 Female
9 800057 800010 Albania Albanian August 2006 Female
10 800132 800012 Albania Albanian September 2006 Female
11 800231 800013 Albania Albanian October 2006 Male
12 800097 800014 Albania Albanian April 2006 Male
13 800040 800015 Albania Albanian May 2006 Male
14 800150 800016 Albania Albanian August 2006 Male
15 800161 800017 Albania Albanian July 2006 Female
16 800039 800019 Albania Albanian February 2006 Female
17 800265 800020 Albania Albanian March 2006 Male
18 800265 800023 Albania Albanian June 2006 Female
19 800123 800024 Albania Albanian March 2006 Female
20 800079 800025 Albania Albanian August 2006 Female
21 800163 800026 Albania Albanian October 2006 Male
22 800009 800028 Albania Albanian January 2006 Male
23 800236 800029 Albania Albanian October 2006 Male
24 800282 800030 Albania Albanian February 2006 Female
25 800172 800031 Albania Albanian May 2006 Female
26 800042 800032 Albania Albanian June 2006 Female
27 800055 800034 Albania Albanian August 2006 Female
28 800097 800035 Albania Albanian January 2006 Female
29 800161 800036 Albania Albanian March 2006 Male
30 800191 800037 Albania Albanian February 2006 Female
31 800281 800038 Albania Albanian May 2006 Male
32 800205 800040 Albania Albanian July 2006 Male
33 800144 800042 Albania Albanian December 2006 Male
34 800286 800043 Albania Albanian April 2006 Female
35 800282 800044 Albania Albanian January 2006 Female
36 800286 800045 Albania Albanian October 2006 Male
37 800174 800046 Albania Albanian October 2006 Female
38 800268 800047 Albania Albanian March 2006 Female
39 800061 800048 Albania Albanian March 2006 Female
40 800257 800050 Albania Albanian September 2006 Female
41 800212 800051 Albania Albanian March 2006 Female
42 800056 800052 Albania Albanian February 2006 Male
43 800232 800053 Albania Albanian September 2006 Female
44 800095 800054 Albania Albanian August 2006 Male
45 800265 800055 Albania Albanian March 2006 Male
46 800284 800056 Albania Albanian March 2006 Female
47 800193 800057 Albania Albanian June 2006 Female
48 800241 800058 Albania Albanian May 2006 Male
49 800276 800059 Albania Albanian May 2006 Male
50 800232 800060 Albania Albanian May 2006 Female
51 800138 800061 Albania Albanian July 2006 Female
52 800274 800062 Albania Albanian December 2006 Female
53 800054 800063 Albania Albanian August 2006 Female
54 800165 800064 Albania Albanian April 2006 Male
55 800206 800065 Albania Albanian June 2006 Male
56 800246 800066 Albania Albanian November 2006 Female
57 800123 800067 Albania Albanian November 2006 Male
58 800201 800072 Albania Albanian June 2006 Male
59 800269 800073 Albania Albanian May 2006 Male
60 800265 800074 Albania Albanian July 2006 Male
61 800162 800075 Albania Albanian August 2006 Male
62 800261 800076 Albania Albanian January 2006 Female
63 800197 800077 Albania Albanian January 2006 Female
64 800022 800078 Albania Albanian August 2006 Female
65 800157 800080 Albania <NA> January 2006 Male
66 800174 800081 Albania Albanian March 2006 Male
67 800187 800082 Albania Albanian June 2006 Female
68 800036 800084 Albania Albanian August 2006 Female
69 800291 800085 Albania Albanian October 2006 Female
70 800224 800086 Albania Albanian June 2006 Male
71 800116 800087 Albania Albanian June 2006 Female
72 800130 800088 Albania <NA> October 2006 Female
73 800022 800090 Albania Albanian October 2006 Male
74 800096 800092 Albania Albanian September 2006 Male
75 800265 800093 Albania Albanian May 2006 Female
76 800281 800094 Albania Albanian July 2006 Male
77 800042 800096 Albania Albanian September 2006 Female
78 800081 800097 Albania Albanian May 2006 Male
79 800115 800099 Albania Albanian September 2006 Male
80 800203 800101 Albania Albanian May 2006 Female
81 800008 800103 Albania Albanian June 2006 Male
82 800111 800105 Albania Albanian August 2006 Male
83 800204 800106 Albania Albanian March 2006 Female
84 800281 800107 Albania Albanian June 2006 Male
85 800253 800109 Albania Albanian December 2006 Male
86 800158 800110 Albania Albanian December 2006 Male
87 800160 800111 Albania Albanian October 2006 Male
88 800281 800112 Albania Albanian November 2006 Male
89 800089 800113 Albania Albanian April 2006 Male
90 800065 800115 Albania <NA> June 2006 Male
91 800063 800117 Albania Albanian April 2006 Female
92 800279 800118 Albania Albanian January 2006 Male
93 800118 800119 Albania Albanian March 2006 Female
94 800241 800120 Albania Albanian September 2006 Male
95 800209 800121 Albania Albanian August 2006 Male
96 800195 800122 Albania Albanian April 2006 Male
97 800059 800123 Albania Albanian May 2006 Female
98 800155 800124 Albania Albanian December 2006 Male
99 800256 800125 Albania Albanian April 2006 Female
100 800253 800126 Albania Albanian May 2006 Female
101 800232 800127 Albania Albanian October 2006 Female
102 800023 800128 Albania Albanian October 2006 Male
103 800246 800129 Albania Albanian September 2006 Female
104 800038 800132 Albania Albanian September 2006 Female
105 800296 800133 Albania Albanian June 2006 Male
106 800099 800134 Albania Albanian June 2006 Male
107 800116 800135 Albania Albanian October 2006 Female
108 800267 800136 Albania Albanian January 2006 Male
109 800047 800137 Albania Albanian June 2006 Female
110 800172 800139 Albania <NA> July 2006 Male
111 800201 800140 Albania Albanian June 2006 Male
112 800118 800141 Albania Albanian March 2006 Female
113 800233 800142 Albania Albanian February 2006 Male
114 800174 800143 Albania Albanian October 2006 Male
115 800254 800144 Albania Albanian September 2006 Male
116 800236 800145 Albania Albanian June 2006 Female
117 800193 800146 Albania Albanian December 2006 Female
118 800088 800147 Albania Albanian February 2006 Male
119 800222 800148 Albania Albanian December 2006 Male
120 800051 800149 Albania Albanian March 2006 Female
121 800156 800151 Albania Albanian December 2006 Female
122 800083 800153 Albania Albanian March 2006 Female
123 800159 800154 Albania Albanian July 2006 Male
124 800063 800155 Albania Albanian September 2006 Male
125 800117 800157 Albania Albanian December 2006 Female
126 800094 800161 Albania Albanian December 2006 Female
127 800201 800162 Albania Albanian May 2006 Male
128 800028 800163 Albania Albanian September 2006 Female
129 800163 800164 Albania Albanian August 2006 Female
130 800105 800165 Albania Albanian September 2006 Female
131 800057 800166 Albania Albanian March 2006 Male
132 800291 800167 Albania Albanian September 2006 Male
133 800170 800168 Albania Albanian November 2006 Female
134 800023 800169 Albania Albanian October 2006 Male
135 800197 800170 Albania Albanian May 2006 Female
136 800157 800171 Albania Albanian August 2006 Female
137 800162 800173 Albania Albanian July 2006 Male
138 800089 800174 Albania Albanian May 2006 Male
139 800002 800175 Albania Albanian May 2006 Female
140 800150 800176 Albania Albanian August 2006 Female
141 800090 800177 Albania Albanian October 2006 Female
142 800004 800178 Albania Albanian December 2006 Male
143 800175 800179 Albania Albanian October 2006 Male
144 800266 800180 Albania Albanian August 2006 Male
145 800137 800181 Albania Albanian January 2006 Male
146 800047 800182 Albania Albanian June 2006 Female
147 800063 800183 Albania Albanian December 2006 Male
148 800027 800184 Albania Albanian September 2006 Male
149 800280 800185 Albania Albanian March 2006 Female
150 800038 800186 Albania Albanian February 2006 Male
151 800191 800188 Albania Albanian March 2006 Male
152 800262 800190 Albania Albanian December 2006 Female
153 800281 800191 Albania Albanian June 2006 Male
154 800008 800192 Albania Albanian November 2006 Female
155 800019 800193 Albania Albanian January 2006 Female
156 800063 800194 Albania Albanian March 2006 Female
157 800161 800195 Albania Albanian May 2006 Male
158 800146 800197 Albania Albanian September 2006 Male
159 800176 800198 Albania Albanian February 2006 Female
160 800118 800199 Albania Albanian April 2006 Female
161 800024 800201 Albania Albanian November 2006 Female
162 800157 800204 Albania Albanian April 2006 Female
163 800286 800205 Albania Albanian June 2006 Male
164 800038 800206 Albania Albanian June 2006 Male
165 800175 800207 Albania Albanian November 2006 Female
166 800196 800208 Albania Albanian May 2006 Male
167 800045 800209 Albania Albanian July 2006 Female
168 800247 800211 Albania Albanian October 2006 Male
169 800174 800212 Albania Albanian October 2006 Male
170 800183 800213 Albania Albanian January 2006 Male
171 800295 800214 Albania Albanian December 2006 Male
172 800276 800215 Albania Albanian August 2006 Female
173 800268 800216 Albania Albanian December 2006 Male
174 800077 800217 Albania Albanian August 2006 Male
175 800138 800218 Albania Albanian April 2006 Female
176 800059 800219 Albania Albanian February 2006 Female
177 800262 800221 Albania Albanian April 2006 Male
178 800055 800223 Albania Albanian April 2006 Male
179 800222 800224 Albania Albanian December 2006 Male
180 800262 800225 Albania Albanian October 2006 Male
181 800267 800227 Albania Albanian March 2006 Female
182 800232 800229 Albania Albanian July 2006 Male
183 800142 800230 Albania <NA> January 2006 Male
184 800267 800231 Albania Albanian February 2006 Male
185 800133 800232 Albania Albanian June 2006 Female
186 800291 800233 Albania Albanian June 2006 Female
187 800064 800234 Albania Albanian November 2006 Female
188 800271 800235 Albania Albanian February 2006 Female
189 800084 800236 Albania Albanian April 2006 Female
190 800114 800237 Albania Albanian February 2006 Female
191 800065 800238 Albania Albanian September 2006 Male
192 800149 800239 Albania Albanian May 2006 Male
193 800118 800240 Albania Albanian September 2006 Female
194 800047 800241 Albania Albanian May 2006 Male
195 800097 800242 Albania Albanian May 2006 Female
196 800201 800243 Albania Albanian July 2006 Male
197 800008 800244 Albania Albanian July 2006 Male
198 800243 800245 Albania Albanian November 2006 Male
199 800240 800246 Albania Albanian July 2006 Male
200 800107 800247 Albania Albanian March 2006 Female
201 800191 800248 Albania Albanian July 2006 Male
202 800083 800249 Albania Albanian June 2006 Female
203 800026 800250 Albania Albanian May 2006 Female
204 800083 800251 Albania Albanian September 2006 Female
205 800262 800253 Albania Albanian April 2006 Male
206 800002 800254 Albania Albanian October 2006 Male
207 800094 800255 Albania Albanian March 2006 Female
208 800107 800256 Albania Albanian June 2006 Female
209 800283 800257 Albania Albanian January 2006 Male
210 800066 800259 Albania Albanian April 2006 Male
211 800118 800260 Albania Albanian September 2006 Female
212 800166 800261 Albania Albanian May 2006 Female
213 800027 800262 Albania Albanian February 2006 Male
214 800173 800263 Albania Albanian December 2006 Male
215 800266 800264 Albania Albanian May 2006 Male
216 800210 800265 Albania Albanian December 2006 Female
217 800200 800267 Albania Albanian December 2006 Female
218 800201 800268 Albania Albanian May 2006 Male
219 800166 800269 Albania <NA> April 2006 Male
220 800048 800270 Albania Albanian June 2006 Female
221 800029 800271 Albania Albanian December 2006 Female
222 800101 800272 Albania Albanian June 2006 Male
223 800022 800273 Albania Albanian December 2006 Female
224 800091 800274 Albania Albanian December 2006 Female
225 800203 800275 Albania Albanian September 2006 Female
226 800022 800276 Albania Albanian May 2006 Male
227 800100 800277 Albania Albanian March 2006 Female
228 800293 800278 Albania Albanian October 2006 Male
229 800203 800279 Albania Albanian October 2006 Female
230 800266 800280 Albania Albanian April 2006 Male
231 800196 800281 Albania Albanian June 2006 Male
232 800274 800283 Albania Albanian December 2006 Female
233 800034 800285 Albania Albanian October 2006 Female
234 800108 800286 Albania <NA> January 2006 Female
235 800091 800288 Albania Albanian October 2006 Male
236 800040 800290 Albania Albanian May 2006 Male
237 800163 800292 Albania Albanian November 2006 Female
238 800108 800293 Albania Albanian January 2006 Male
239 800190 800295 Albania Albanian July 2006 Male
240 800001 800296 Albania Albanian February 2006 Male
241 800009 800297 Albania Albanian May 2006 Female
242 800293 800298 Albania Albanian January 2006 Male
243 800056 800299 Albania Albanian February 2006 Female
244 800265 800300 Albania Albanian July 2006 Female
245 800282 800301 Albania Albanian December 2006 Female
246 800246 800302 Albania Albanian October 2006 Male
247 800267 800304 Albania Albanian December 2006 Female
248 800020 800305 Albania Albanian December 2006 Female
249 800120 800306 Albania Albanian November 2006 Male
250 800284 800307 Albania Albanian May 2006 Female
251 800261 800308 Albania Albanian June 2006 Male
252 800265 800309 Albania Albanian March 2006 Female
253 800255 800310 Albania Albanian April 2006 Female
254 800048 800312 Albania Albanian November 2006 Male
255 800061 800313 Albania Albanian April 2006 Male
256 800007 800314 Albania Albanian August 2006 Female
257 800064 800315 Albania Albanian October 2006 Female
258 800137 800316 Albania Albanian August 2006 Male
259 800222 800317 Albania Albanian May 2006 Male
260 800262 800318 Albania Albanian July 2006 Male
261 800019 800319 Albania Albanian April 2006 Female
262 800241 800320 Albania Albanian November 2006 Male
263 800162 800321 Albania Albanian April 2006 Male
264 800163 800323 Albania Albanian June 2006 Female
265 800241 800324 Albania Albanian October 2006 Female
266 800149 800325 Albania Albanian February 2006 Female
267 800203 800326 Albania Albanian January 2006 Male
268 800108 800328 Albania Albanian March 2006 Female
269 800212 800329 Albania Albanian July 2006 Male
270 800009 800331 Albania Albanian October 2006 Female
271 800055 800332 Albania Albanian June 2006 Male
272 800007 800333 Albania Albanian July 2006 Female
273 800285 800334 Albania Albanian June 2006 Male
274 800159 800335 Albania Albanian January 2006 Male
275 800020 800336 Albania Albanian January 2006 Female
276 800231 800337 Albania Albanian March 2006 Female
277 800257 800338 Albania Albanian June 2006 Male
278 800128 800340 Albania Albanian July 2006 Female
279 800026 800341 Albania Albanian September 2006 Female
280 800087 800342 Albania Albanian January 2006 Male
281 800222 800343 Albania Albanian November 2006 Male
282 800123 800344 Albania Albanian February 2006 Female
283 800054 800346 Albania Albanian July 2006 Male
284 800190 800347 Albania Albanian April 2006 Male
285 800174 800348 Albania Albanian January 2006 Male
286 800098 800349 Albania Albanian August 2006 Female
287 800125 800351 Albania Albanian September 2006 Male
288 800201 800352 Albania Albanian September 2006 Male
289 800064 800354 Albania Albanian December 2006 Female
290 800212 800355 Albania Albanian March 2006 Male
291 800029 800356 Albania Albanian March 2006 Female
292 800022 800358 Albania Albanian September 2006 Male
293 800188 800359 Albania Albanian September 2006 Male
294 800040 800360 Albania Albanian September 2006 Female
295 800159 800361 Albania Albanian May 2006 Female
296 800236 800363 Albania Albanian July 2006 Male
297 800254 800366 Albania Albanian June 2006 Male
298 800294 800367 Albania Albanian February 2006 Male
299 800166 800368 Albania Albanian May 2006 Female
300 800094 800369 Albania Albanian June 2006 Female
301 800280 800370 Albania Albanian September 2006 Male
302 800054 800371 Albania Albanian December 2006 Female
303 800065 800372 Albania Albanian July 2006 Male
304 800082 800373 Albania Albanian August 2006 Male
305 800265 800374 Albania Albanian October 2006 Male
306 800186 800375 Albania Albanian January 2006 Male
307 800127 800376 Albania Albanian March 2006 Female
308 800279 800377 Albania Albanian June 2006 Male
309 800278 800379 Albania <NA> April 2006 Male
310 800117 800380 Albania Albanian August 2006 Female
311 800163 800382 Albania Albanian October 2006 Male
312 800052 800383 Albania Albanian June 2006 Male
313 800001 800385 Albania Albanian May 2006 Female
314 800038 800386 Albania Albanian July 2006 Female
315 800184 800387 Albania Albanian August 2006 Male
316 800090 800388 Albania Albanian October 2006 Female
317 800092 800390 Albania Albanian July 2006 Male
318 800092 800391 Albania Albanian August 2006 Female
319 800244 800392 Albania Albanian August 2006 Female
320 800174 800393 Albania Albanian November 2006 Female
321 800228 800394 Albania Albanian October 2006 Male
322 800083 800395 Albania Albanian August 2006 Female
323 800241 800396 Albania Albanian August 2006 Female
324 800209 800398 Albania <NA> March 2006 Female
325 800267 800399 Albania <NA> May 2006 Female
326 800227 800401 Albania Albanian March 2006 Male
327 800247 800402 Albania Albanian June 2006 Male
328 800263 800403 Albania Albanian October 2006 Female
329 800242 800405 Albania Albanian January 2006 Male
330 800172 800406 Albania Albanian June 2006 Male
331 800279 800408 Albania Albanian November 2006 Female
332 800130 800409 Albania <NA> October 2006 Male
333 800285 800410 Albania Albanian April 2006 Female
334 800089 800411 Albania Albanian November 2006 Female
335 800064 800412 Albania Albanian December 2006 Female
336 800023 800413 Albania Albanian June 2006 Male
337 800024 800415 Albania Albanian January 2006 Male
338 800276 800416 Albania Albanian March 2006 Female
339 800285 800417 Albania Albanian August 2006 Female
340 800118 800418 Albania Albanian October 2006 Male
341 800150 800419 Albania Albanian September 2006 Male
342 800131 800420 Albania Albanian July 2006 Male
343 800206 800421 Albania Albanian August 2006 Female
344 800291 800424 Albania Albanian December 2006 Female
345 800263 800425 Albania Albanian September 2006 Male
346 800198 800426 Albania Albanian March 2006 Male
347 800059 800427 Albania Albanian February 2006 Male
348 800203 800429 Albania Albanian August 2006 Male
349 800017 800430 Albania Albanian May 2006 Male
350 800001 800431 Albania Albanian May 2006 Female
351 800278 800434 Albania Albanian January 2006 Male
352 800197 800435 Albania Albanian March 2006 Female
353 800061 800436 Albania Albanian May 2006 Female
354 800195 800438 Albania Albanian May 2006 Female
355 800162 800439 Albania Albanian September 2006 Female
356 800101 800440 Albania Albanian June 2006 Male
357 800191 800442 Albania Albanian May 2006 Male
358 800204 800443 Albania Albanian July 2006 Male
359 800229 800444 Albania Albanian March 2006 Male
360 800257 800445 Albania Albanian January 2006 Female
361 800050 800446 Albania Albanian August 2006 Male
362 800096 800447 Albania Albanian October 2006 Female
363 800291 800449 Albania Albanian July 2006 Female
364 800031 800451 Albania Albanian January 2006 Male
365 800051 800453 Albania Albanian August 2006 Male
366 800195 800454 Albania Albanian March 2006 Female
367 800088 800456 Albania Albanian February 2006 Male
368 800089 800457 Albania Albanian July 2006 Male
369 800103 800459 Albania Albanian January 2006 Female
370 800280 800460 Albania Albanian January 2006 Female
371 800273 800461 Albania <NA> December 2006 Female
372 800246 800462 Albania Albanian June 2006 Male
373 800092 800463 Albania Albanian March 2006 Male
374 800027 800465 Albania Albanian July 2006 Male
375 800133 800466 Albania Albanian September 2006 Male
376 800101 800467 Albania Albanian March 2006 Male
377 800149 800468 Albania Albanian May 2006 Male
378 800253 800469 Albania Albanian September 2006 Male
379 800063 800470 Albania Albanian July 2006 Female
380 800286 800471 Albania Albanian December 2006 Female
381 800208 800472 Albania Albanian June 2006 Female
382 800272 800473 Albania Albanian February 2006 Male
383 800020 800474 Albania Albanian December 2006 Male
384 800112 800475 Albania Albanian November 2006 Female
385 800281 800477 Albania Albanian July 2006 Male
386 800024 800478 Albania Albanian March 2006 Male
387 800090 800479 Albania Albanian November 2006 Male
388 800078 800480 Albania Albanian May 2006 Female
389 800019 800481 Albania Albanian February 2006 Female
390 800168 800482 Albania Albanian October 2006 Male
391 800022 800484 Albania Albanian November 2006 Male
392 800251 800485 Albania Albanian September 2006 Male
393 800247 800486 Albania Albanian February 2006 Male
394 800243 800488 Albania Albanian December 2006 Female
395 800231 800489 Albania Albanian April 2006 Female
396 800012 800490 Albania Albanian August 2006 Female
397 800071 800491 Albania Albanian March 2006 Male
398 800263 800492 Albania Albanian August 2006 Female
399 800272 800493 Albania <NA> May 2006 Male
400 800268 800494 Albania Albanian November 2006 Female
401 800069 800495 Albania Albanian September 2006 Male
402 800233 800496 Albania Albanian March 2006 Male
403 800036 800498 Albania Albanian February 2006 Female
404 800191 800499 Albania Albanian May 2006 Female
405 800204 800500 Albania Albanian May 2006 Female
406 800229 800501 Albania Albanian August 2006 Female
407 800161 800504 Albania Albanian July 2006 Male
408 800001 800505 Albania Albanian June 2006 Male
409 800201 800506 Albania Albanian April 2006 Male
410 800204 800507 Albania Albanian September 2006 Female
411 800112 800508 Albania Albanian April 2006 Female
412 800233 800509 Albania Albanian January 2006 Female
413 800014 800510 Albania Albanian August 2006 Female
414 800212 800511 Albania Albanian February 2006 Female
415 800091 800512 Albania Albanian March 2006 Male
416 800276 800514 Albania Albanian September 2006 Female
417 800257 800516 Albania Albanian July 2006 Female
418 800028 800517 Albania Albanian February 2006 Male
419 800285 800518 Albania Albanian July 2006 Female
420 800029 800520 Albania Albanian October 2006 Male
421 800026 800521 Albania Albanian April 2006 Female
422 800059 800522 Albania Albanian September 2006 Female
423 800197 800523 Albania Albanian January 2006 Female
424 800195 800525 Albania Albanian January 2006 Male
425 800212 800526 Albania Albanian March 2006 Female
426 800189 800528 Albania Albanian November 2006 Female
427 800217 800529 Albania Albanian June 2006 Female
428 800017 800530 Albania Albanian February 2006 Male
429 800295 800531 Albania Albanian November 2006 Female
430 800233 800532 Albania Albanian March 2006 Male
431 800056 800533 Albania Albanian August 2006 Male
432 800095 800534 Albania Albanian June 2006 Male
433 800149 800535 Albania Albanian March 2006 Female
434 800187 800536 Albania Albanian August 2006 Female
435 800054 800537 Albania Albanian August 2006 Male
436 800254 800538 Albania Albanian September 2006 Female
437 800087 800539 Albania Albanian May 2006 Male
438 800197 800540 Albania Albanian September 2006 Male
439 800166 800543 Albania Albanian May 2006 Male
440 800057 800544 Albania Albanian April 2006 Female
441 800199 800545 Albania Albanian December 2006 Male
442 800035 800547 Albania Albanian November 2006 Male
443 800285 800549 Albania Albanian August 2006 Male
444 800132 800551 Albania Albanian May 2006 Female
445 800150 800552 Albania Albanian January 2006 Male
446 800184 800553 Albania Albanian September 2006 Female
447 800029 800554 Albania Albanian November 2006 Male
448 800112 800555 Albania Albanian October 2006 Female
449 800276 800558 Albania Albanian May 2006 Male
450 800267 800559 Albania Albanian May 2006 Female
451 800104 800560 Albania Albanian August 2006 Female
452 800180 800561 Albania Albanian January 2006 Female
453 800190 800562 Albania Albanian July 2006 Female
454 800266 800564 Albania Albanian June 2006 Female
455 800042 800566 Albania Albanian August 2006 Female
456 800198 800567 Albania Albanian March 2006 Male
457 800096 800568 Albania Albanian August 2006 Female
458 800238 800569 Albania Albanian November 2006 Female
459 800262 800570 Albania Albanian April 2006 Female
460 800158 800571 Albania Albanian September 2006 Female
461 800022 800572 Albania Albanian November 2006 Male
462 800265 800573 Albania Albanian March 2006 Male
463 800047 800574 Albania Albanian April 2006 Male
464 800056 800575 Albania Albanian February 2006 Female
465 800188 800576 Albania Albanian March 2006 Male
466 800241 800578 Albania Albanian December 2006 Female
467 800158 800579 Albania Albanian September 2006 Male
468 800172 800580 Albania Albanian April 2006 Female
469 800142 800581 Albania Albanian August 2006 Male
470 800012 800582 Albania Albanian December 2006 Female
471 800175 800583 Albania Albanian July 2006 Male
472 800056 800584 Albania Albanian May 2006 Female
473 800114 800585 Albania Albanian May 2006 Female
474 800279 800586 Albania Albanian June 2006 Female
475 800261 800587 Albania Albanian March 2006 Female
476 800291 800588 Albania Albanian December 2006 Female
477 800276 800589 Albania Albanian January 2006 Male
478 800138 800590 Albania Albanian May 2006 Female
479 800040 800591 Albania Albanian April 2006 Male
480 800001 800592 Albania Albanian August 2006 Male
481 800114 800593 Albania Albanian October 2006 Male
482 800080 800594 Albania Albanian May 2006 Female
483 800061 800596 Albania Albanian May 2006 Female
484 800145 800597 Albania Albanian September 2006 Female
485 800149 800598 Albania Albanian February 2006 Female
486 800236 800599 Albania Albanian December 2006 Male
487 800038 800600 Albania Albanian January 2006 Female
488 800125 800601 Albania Albanian November 2006 Male
489 800072 800602 Albania Albanian August 2006 Male
490 800094 800603 Albania Albanian June 2006 Female
491 800252 800605 Albania Albanian March 2006 Female
492 800013 800606 Albania Albanian October 2006 Male
493 800196 800608 Albania Albanian May 2006 Female
494 800019 800609 Albania Albanian January 2006 Male
495 800222 800610 Albania Albanian December 2006 Female
496 800193 800611 Albania Albanian November 2006 Male
497 800293 800612 Albania Albanian January 2006 Female
498 800072 800613 Albania Albanian December 2006 Male
499 800077 800615 Albania Albanian October 2006 Female
500 800176 800616 Albania Albanian August 2006 Female
# ℹ 613,244 more rows
# ℹ 75 more variables: ST250Q01JA <fct>, ST250Q02JA <fct>, ST250Q03JA <fct>,
# ST250Q05JA <fct>, ST251Q01JA <fct>, ST251Q06JA <fct>, ST251Q07JA <fct>,
# ST253Q01JA <fct>, ST254Q01JA <fct>, ST254Q02JA <fct>, ST254Q03JA <fct>,
# ST254Q04JA <fct>, ST254Q05JA <fct>, ST254Q06JA <fct>, ST255Q01JA <fct>,
# ST256Q02JA <fct>, ST005Q01JA <fct>, ST007Q01JA <fct>, ST019AQ01T <fct>,
# ST019BQ01T <fct>, ST019CQ01T <fct>, ST125Q01NA <fct>, ST261Q01JA <fct>, …
You might find that you have a vector of column names that you want to select, to do this, we can use the any_of command:
# A tibble: 613,744 × 3
CNT CNTSCHID ST004D01T
<fct> <dbl> <fct>
1 Albania 800282 Female
2 Albania 800115 Male
3 Albania 800242 Male
4 Albania 800245 Female
5 Albania 800285 Female
6 Albania 800172 Male
7 Albania 800082 Male
8 Albania 800274 Female
9 Albania 800057 Female
10 Albania 800132 Female
11 Albania 800231 Male
12 Albania 800097 Male
13 Albania 800040 Male
14 Albania 800150 Male
15 Albania 800161 Female
16 Albania 800039 Female
17 Albania 800265 Male
18 Albania 800265 Female
19 Albania 800123 Female
20 Albania 800079 Female
21 Albania 800163 Male
22 Albania 800009 Male
23 Albania 800236 Male
24 Albania 800282 Female
25 Albania 800172 Female
26 Albania 800042 Female
27 Albania 800055 Female
28 Albania 800097 Female
29 Albania 800161 Male
30 Albania 800191 Female
31 Albania 800281 Male
32 Albania 800205 Male
33 Albania 800144 Male
34 Albania 800286 Female
35 Albania 800282 Female
36 Albania 800286 Male
37 Albania 800174 Female
38 Albania 800268 Female
39 Albania 800061 Female
40 Albania 800257 Female
41 Albania 800212 Female
42 Albania 800056 Male
43 Albania 800232 Female
44 Albania 800095 Male
45 Albania 800265 Male
46 Albania 800284 Female
47 Albania 800193 Female
48 Albania 800241 Male
49 Albania 800276 Male
50 Albania 800232 Female
51 Albania 800138 Female
52 Albania 800274 Female
53 Albania 800054 Female
54 Albania 800165 Male
55 Albania 800206 Male
56 Albania 800246 Female
57 Albania 800123 Male
58 Albania 800201 Male
59 Albania 800269 Male
60 Albania 800265 Male
61 Albania 800162 Male
62 Albania 800261 Female
63 Albania 800197 Female
64 Albania 800022 Female
65 Albania 800157 Male
66 Albania 800174 Male
67 Albania 800187 Female
68 Albania 800036 Female
69 Albania 800291 Female
70 Albania 800224 Male
71 Albania 800116 Female
72 Albania 800130 Female
73 Albania 800022 Male
74 Albania 800096 Male
75 Albania 800265 Female
76 Albania 800281 Male
77 Albania 800042 Female
78 Albania 800081 Male
79 Albania 800115 Male
80 Albania 800203 Female
81 Albania 800008 Male
82 Albania 800111 Male
83 Albania 800204 Female
84 Albania 800281 Male
85 Albania 800253 Male
86 Albania 800158 Male
87 Albania 800160 Male
88 Albania 800281 Male
89 Albania 800089 Male
90 Albania 800065 Male
91 Albania 800063 Female
92 Albania 800279 Male
93 Albania 800118 Female
94 Albania 800241 Male
95 Albania 800209 Male
96 Albania 800195 Male
97 Albania 800059 Female
98 Albania 800155 Male
99 Albania 800256 Female
100 Albania 800253 Female
101 Albania 800232 Female
102 Albania 800023 Male
103 Albania 800246 Female
104 Albania 800038 Female
105 Albania 800296 Male
106 Albania 800099 Male
107 Albania 800116 Female
108 Albania 800267 Male
109 Albania 800047 Female
110 Albania 800172 Male
111 Albania 800201 Male
112 Albania 800118 Female
113 Albania 800233 Male
114 Albania 800174 Male
115 Albania 800254 Male
116 Albania 800236 Female
117 Albania 800193 Female
118 Albania 800088 Male
119 Albania 800222 Male
120 Albania 800051 Female
121 Albania 800156 Female
122 Albania 800083 Female
123 Albania 800159 Male
124 Albania 800063 Male
125 Albania 800117 Female
126 Albania 800094 Female
127 Albania 800201 Male
128 Albania 800028 Female
129 Albania 800163 Female
130 Albania 800105 Female
131 Albania 800057 Male
132 Albania 800291 Male
133 Albania 800170 Female
134 Albania 800023 Male
135 Albania 800197 Female
136 Albania 800157 Female
137 Albania 800162 Male
138 Albania 800089 Male
139 Albania 800002 Female
140 Albania 800150 Female
141 Albania 800090 Female
142 Albania 800004 Male
143 Albania 800175 Male
144 Albania 800266 Male
145 Albania 800137 Male
146 Albania 800047 Female
147 Albania 800063 Male
148 Albania 800027 Male
149 Albania 800280 Female
150 Albania 800038 Male
151 Albania 800191 Male
152 Albania 800262 Female
153 Albania 800281 Male
154 Albania 800008 Female
155 Albania 800019 Female
156 Albania 800063 Female
157 Albania 800161 Male
158 Albania 800146 Male
159 Albania 800176 Female
160 Albania 800118 Female
161 Albania 800024 Female
162 Albania 800157 Female
163 Albania 800286 Male
164 Albania 800038 Male
165 Albania 800175 Female
166 Albania 800196 Male
167 Albania 800045 Female
168 Albania 800247 Male
169 Albania 800174 Male
170 Albania 800183 Male
171 Albania 800295 Male
172 Albania 800276 Female
173 Albania 800268 Male
174 Albania 800077 Male
175 Albania 800138 Female
176 Albania 800059 Female
177 Albania 800262 Male
178 Albania 800055 Male
179 Albania 800222 Male
180 Albania 800262 Male
181 Albania 800267 Female
182 Albania 800232 Male
183 Albania 800142 Male
184 Albania 800267 Male
185 Albania 800133 Female
186 Albania 800291 Female
187 Albania 800064 Female
188 Albania 800271 Female
189 Albania 800084 Female
190 Albania 800114 Female
191 Albania 800065 Male
192 Albania 800149 Male
193 Albania 800118 Female
194 Albania 800047 Male
195 Albania 800097 Female
196 Albania 800201 Male
197 Albania 800008 Male
198 Albania 800243 Male
199 Albania 800240 Male
200 Albania 800107 Female
201 Albania 800191 Male
202 Albania 800083 Female
203 Albania 800026 Female
204 Albania 800083 Female
205 Albania 800262 Male
206 Albania 800002 Male
207 Albania 800094 Female
208 Albania 800107 Female
209 Albania 800283 Male
210 Albania 800066 Male
211 Albania 800118 Female
212 Albania 800166 Female
213 Albania 800027 Male
214 Albania 800173 Male
215 Albania 800266 Male
216 Albania 800210 Female
217 Albania 800200 Female
218 Albania 800201 Male
219 Albania 800166 Male
220 Albania 800048 Female
221 Albania 800029 Female
222 Albania 800101 Male
223 Albania 800022 Female
224 Albania 800091 Female
225 Albania 800203 Female
226 Albania 800022 Male
227 Albania 800100 Female
228 Albania 800293 Male
229 Albania 800203 Female
230 Albania 800266 Male
231 Albania 800196 Male
232 Albania 800274 Female
233 Albania 800034 Female
234 Albania 800108 Female
235 Albania 800091 Male
236 Albania 800040 Male
237 Albania 800163 Female
238 Albania 800108 Male
239 Albania 800190 Male
240 Albania 800001 Male
241 Albania 800009 Female
242 Albania 800293 Male
243 Albania 800056 Female
244 Albania 800265 Female
245 Albania 800282 Female
246 Albania 800246 Male
247 Albania 800267 Female
248 Albania 800020 Female
249 Albania 800120 Male
250 Albania 800284 Female
251 Albania 800261 Male
252 Albania 800265 Female
253 Albania 800255 Female
254 Albania 800048 Male
255 Albania 800061 Male
256 Albania 800007 Female
257 Albania 800064 Female
258 Albania 800137 Male
259 Albania 800222 Male
260 Albania 800262 Male
261 Albania 800019 Female
262 Albania 800241 Male
263 Albania 800162 Male
264 Albania 800163 Female
265 Albania 800241 Female
266 Albania 800149 Female
267 Albania 800203 Male
268 Albania 800108 Female
269 Albania 800212 Male
270 Albania 800009 Female
271 Albania 800055 Male
272 Albania 800007 Female
273 Albania 800285 Male
274 Albania 800159 Male
275 Albania 800020 Female
276 Albania 800231 Female
277 Albania 800257 Male
278 Albania 800128 Female
279 Albania 800026 Female
280 Albania 800087 Male
281 Albania 800222 Male
282 Albania 800123 Female
283 Albania 800054 Male
284 Albania 800190 Male
285 Albania 800174 Male
286 Albania 800098 Female
287 Albania 800125 Male
288 Albania 800201 Male
289 Albania 800064 Female
290 Albania 800212 Male
291 Albania 800029 Female
292 Albania 800022 Male
293 Albania 800188 Male
294 Albania 800040 Female
295 Albania 800159 Female
296 Albania 800236 Male
297 Albania 800254 Male
298 Albania 800294 Male
299 Albania 800166 Female
300 Albania 800094 Female
301 Albania 800280 Male
302 Albania 800054 Female
303 Albania 800065 Male
304 Albania 800082 Male
305 Albania 800265 Male
306 Albania 800186 Male
307 Albania 800127 Female
308 Albania 800279 Male
309 Albania 800278 Male
310 Albania 800117 Female
311 Albania 800163 Male
312 Albania 800052 Male
313 Albania 800001 Female
314 Albania 800038 Female
315 Albania 800184 Male
316 Albania 800090 Female
317 Albania 800092 Male
318 Albania 800092 Female
319 Albania 800244 Female
320 Albania 800174 Female
321 Albania 800228 Male
322 Albania 800083 Female
323 Albania 800241 Female
324 Albania 800209 Female
325 Albania 800267 Female
326 Albania 800227 Male
327 Albania 800247 Male
328 Albania 800263 Female
329 Albania 800242 Male
330 Albania 800172 Male
331 Albania 800279 Female
332 Albania 800130 Male
333 Albania 800285 Female
334 Albania 800089 Female
335 Albania 800064 Female
336 Albania 800023 Male
337 Albania 800024 Male
338 Albania 800276 Female
339 Albania 800285 Female
340 Albania 800118 Male
341 Albania 800150 Male
342 Albania 800131 Male
343 Albania 800206 Female
344 Albania 800291 Female
345 Albania 800263 Male
346 Albania 800198 Male
347 Albania 800059 Male
348 Albania 800203 Male
349 Albania 800017 Male
350 Albania 800001 Female
351 Albania 800278 Male
352 Albania 800197 Female
353 Albania 800061 Female
354 Albania 800195 Female
355 Albania 800162 Female
356 Albania 800101 Male
357 Albania 800191 Male
358 Albania 800204 Male
359 Albania 800229 Male
360 Albania 800257 Female
361 Albania 800050 Male
362 Albania 800096 Female
363 Albania 800291 Female
364 Albania 800031 Male
365 Albania 800051 Male
366 Albania 800195 Female
367 Albania 800088 Male
368 Albania 800089 Male
369 Albania 800103 Female
370 Albania 800280 Female
371 Albania 800273 Female
372 Albania 800246 Male
373 Albania 800092 Male
374 Albania 800027 Male
375 Albania 800133 Male
376 Albania 800101 Male
377 Albania 800149 Male
378 Albania 800253 Male
379 Albania 800063 Female
380 Albania 800286 Female
381 Albania 800208 Female
382 Albania 800272 Male
383 Albania 800020 Male
384 Albania 800112 Female
385 Albania 800281 Male
386 Albania 800024 Male
387 Albania 800090 Male
388 Albania 800078 Female
389 Albania 800019 Female
390 Albania 800168 Male
391 Albania 800022 Male
392 Albania 800251 Male
393 Albania 800247 Male
394 Albania 800243 Female
395 Albania 800231 Female
396 Albania 800012 Female
397 Albania 800071 Male
398 Albania 800263 Female
399 Albania 800272 Male
400 Albania 800268 Female
401 Albania 800069 Male
402 Albania 800233 Male
403 Albania 800036 Female
404 Albania 800191 Female
405 Albania 800204 Female
406 Albania 800229 Female
407 Albania 800161 Male
408 Albania 800001 Male
409 Albania 800201 Male
410 Albania 800204 Female
411 Albania 800112 Female
412 Albania 800233 Female
413 Albania 800014 Female
414 Albania 800212 Female
415 Albania 800091 Male
416 Albania 800276 Female
417 Albania 800257 Female
418 Albania 800028 Male
419 Albania 800285 Female
420 Albania 800029 Male
421 Albania 800026 Female
422 Albania 800059 Female
423 Albania 800197 Female
424 Albania 800195 Male
425 Albania 800212 Female
426 Albania 800189 Female
427 Albania 800217 Female
428 Albania 800017 Male
429 Albania 800295 Female
430 Albania 800233 Male
431 Albania 800056 Male
432 Albania 800095 Male
433 Albania 800149 Female
434 Albania 800187 Female
435 Albania 800054 Male
436 Albania 800254 Female
437 Albania 800087 Male
438 Albania 800197 Male
439 Albania 800166 Male
440 Albania 800057 Female
441 Albania 800199 Male
442 Albania 800035 Male
443 Albania 800285 Male
444 Albania 800132 Female
445 Albania 800150 Male
446 Albania 800184 Female
447 Albania 800029 Male
448 Albania 800112 Female
449 Albania 800276 Male
450 Albania 800267 Female
451 Albania 800104 Female
452 Albania 800180 Female
453 Albania 800190 Female
454 Albania 800266 Female
455 Albania 800042 Female
456 Albania 800198 Male
457 Albania 800096 Female
458 Albania 800238 Female
459 Albania 800262 Female
460 Albania 800158 Female
461 Albania 800022 Male
462 Albania 800265 Male
463 Albania 800047 Male
464 Albania 800056 Female
465 Albania 800188 Male
466 Albania 800241 Female
467 Albania 800158 Male
468 Albania 800172 Female
469 Albania 800142 Male
470 Albania 800012 Female
471 Albania 800175 Male
472 Albania 800056 Female
473 Albania 800114 Female
474 Albania 800279 Female
475 Albania 800261 Female
476 Albania 800291 Female
477 Albania 800276 Male
478 Albania 800138 Female
479 Albania 800040 Male
480 Albania 800001 Male
481 Albania 800114 Male
482 Albania 800080 Female
483 Albania 800061 Female
484 Albania 800145 Female
485 Albania 800149 Female
486 Albania 800236 Male
487 Albania 800038 Female
488 Albania 800125 Male
489 Albania 800072 Male
490 Albania 800094 Female
491 Albania 800252 Female
492 Albania 800013 Male
493 Albania 800196 Female
494 Albania 800019 Male
495 Albania 800222 Female
496 Albania 800193 Male
497 Albania 800293 Female
498 Albania 800072 Male
499 Albania 800077 Female
500 Albania 800176 Female
# ℹ 613,244 more rows
With hundreds of fields available, you might want to focus on fields whose names match a certain pattern, to do this you can use starts_with, ends_with, contains:
# country of birth of student, and father and mother are recorded in ST019___PISA_2022 %>%select(starts_with("ST019"))
# A tibble: 613,744 × 3
ST019AQ01T ST019BQ01T ST019CQ01T
<fct> <fct> <fct>
1 Country of test Country of test Country of test
2 Country of test Country of test Country of test
3 Other country Country of test Country of test
4 Country of test Country of test Country of test
5 Country of test Country of test Country of test
6 Country of test Country of test Country of test
7 Country of test Country of test Country of test
8 Country of test Country of test Country of test
9 Country of test Country of test Country of test
10 Country of test Country of test Country of test
11 Country of test Country of test Country of test
12 I don't know. I don't know. I don't know.
13 <NA> <NA> <NA>
14 Country of test Country of test Country of test
15 Country of test Country of test Country of test
16 Country of test Country of test Country of test
17 Country of test Country of test Country of test
18 Country of test Country of test Country of test
19 Country of test Country of test Country of test
20 Country of test Country of test Country of test
21 Country of test Country of test Country of test
22 Country of test Country of test Country of test
23 Country of test Country of test Country of test
24 Country of test Country of test Country of test
25 <NA> <NA> <NA>
26 Country of test Country of test Country of test
27 Country of test Country of test Country of test
28 Country of test Country of test Country of test
29 Country of test Country of test Country of test
30 Other country Country of test Country of test
31 Other country Country of test I don't know.
32 Country of test Country of test Country of test
33 Country of test Country of test Country of test
34 Country of test Country of test Country of test
35 Country of test Country of test Country of test
36 Country of test Country of test Country of test
37 Country of test Country of test Country of test
38 Country of test Country of test Country of test
39 Country of test Country of test Country of test
40 Country of test Country of test Country of test
41 <NA> Country of test Country of test
42 I don't know. Other country <NA>
43 Country of test Country of test Country of test
44 Country of test Country of test Country of test
45 Country of test Country of test Country of test
46 Country of test Country of test Country of test
47 Country of test Country of test Country of test
48 <NA> <NA> <NA>
49 Country of test Country of test Country of test
50 Country of test Country of test Country of test
51 Country of test Country of test Country of test
52 Country of test Country of test Country of test
53 Country of test Country of test Country of test
54 Country of test Country of test Country of test
55 Country of test Country of test Country of test
56 Country of test Country of test Country of test
57 Other country Country of test Country of test
58 <NA> <NA> <NA>
59 Country of test Country of test Country of test
60 Country of test Country of test Country of test
61 Country of test Country of test Country of test
62 Country of test Country of test Country of test
63 Country of test Country of test Country of test
64 Country of test Country of test Country of test
65 <NA> <NA> <NA>
66 Country of test Country of test Country of test
67 Other country Country of test Other country
68 Country of test Country of test Country of test
69 Country of test Country of test Country of test
70 Country of test Country of test Country of test
71 Country of test Country of test Country of test
72 <NA> <NA> <NA>
73 Country of test Country of test Country of test
74 Country of test Country of test Country of test
75 Other country Country of test Country of test
76 <NA> <NA> <NA>
77 Country of test Country of test Country of test
78 Country of test Country of test Country of test
79 <NA> Country of test <NA>
80 Country of test Country of test Country of test
81 Country of test Country of test Country of test
82 Country of test Country of test Country of test
83 <NA> <NA> Country of test
84 <NA> <NA> <NA>
85 Country of test Other country Other country
86 Country of test Country of test Country of test
87 Country of test Country of test Country of test
88 Country of test Country of test Country of test
89 Country of test Country of test Country of test
90 <NA> <NA> <NA>
91 Other country Country of test Country of test
92 Country of test Country of test Country of test
93 Country of test Country of test Country of test
94 <NA> <NA> <NA>
95 Country of test Country of test Country of test
96 Country of test Country of test Country of test
97 Country of test Country of test Country of test
98 Country of test Country of test Country of test
99 Country of test Country of test Country of test
100 Country of test Country of test Country of test
101 Country of test Country of test Country of test
102 Country of test Country of test Country of test
103 Country of test Country of test Country of test
104 Other country Country of test Country of test
105 Country of test Country of test Country of test
106 <NA> I don't know. Other country
107 Country of test Country of test Country of test
108 <NA> <NA> <NA>
109 <NA> Country of test Country of test
110 <NA> <NA> <NA>
111 Country of test Country of test Country of test
112 Country of test Country of test Country of test
113 Country of test Country of test Country of test
114 Other country Country of test Country of test
115 <NA> <NA> <NA>
116 Country of test Country of test Country of test
117 <NA> Country of test Country of test
118 Other country <NA> <NA>
119 Country of test Country of test Country of test
120 Country of test Country of test Country of test
121 Country of test Country of test Country of test
122 Country of test Country of test Country of test
123 Country of test Country of test Country of test
124 Country of test Country of test Country of test
125 Other country Country of test <NA>
126 Other country Country of test Country of test
127 Country of test Country of test Country of test
128 Country of test Country of test Country of test
129 Country of test Country of test Country of test
130 I don't know. Country of test Country of test
131 Country of test Country of test Country of test
132 <NA> <NA> <NA>
133 Country of test Country of test Country of test
134 Country of test Country of test Country of test
135 Country of test Country of test Country of test
136 Country of test Country of test Country of test
137 Country of test Country of test Country of test
138 Country of test Country of test Country of test
139 Country of test Country of test Country of test
140 Country of test Country of test Country of test
141 Country of test Other country I don't know.
142 <NA> <NA> <NA>
143 <NA> <NA> <NA>
144 <NA> <NA> <NA>
145 <NA> <NA> <NA>
146 Country of test Country of test Country of test
147 Country of test Country of test Country of test
148 Country of test Country of test Country of test
149 Country of test Country of test Country of test
150 Country of test Country of test Country of test
151 Country of test Country of test Country of test
152 Country of test Country of test Country of test
153 Country of test Country of test Country of test
154 Country of test Country of test Country of test
155 Country of test Country of test Country of test
156 Country of test Country of test Country of test
157 Country of test Country of test Country of test
158 Country of test Country of test Country of test
159 Country of test Country of test Country of test
160 Country of test Country of test Country of test
161 Country of test Country of test Country of test
162 Country of test Country of test Country of test
163 Other country <NA> <NA>
164 Country of test Country of test Country of test
165 Country of test Country of test Country of test
166 Country of test Country of test Country of test
167 Country of test Other country I don't know.
168 Country of test Country of test Country of test
169 <NA> <NA> <NA>
170 Country of test Country of test Country of test
171 Country of test Country of test Country of test
172 Country of test Country of test Country of test
173 <NA> <NA> <NA>
174 Country of test Country of test Country of test
175 Country of test Country of test Country of test
176 <NA> Country of test Country of test
177 Country of test Country of test Country of test
178 Country of test Country of test Country of test
179 Country of test Country of test Country of test
180 <NA> <NA> Country of test
181 <NA> <NA> <NA>
182 Country of test Country of test Country of test
183 <NA> <NA> <NA>
184 Country of test Country of test Country of test
185 Country of test Country of test Country of test
186 Country of test Country of test Country of test
187 Country of test Other country <NA>
188 Country of test Country of test Country of test
189 <NA> <NA> <NA>
190 Country of test Country of test Country of test
191 Country of test Country of test Country of test
192 Country of test Country of test Country of test
193 Country of test Country of test Country of test
194 Country of test Country of test Country of test
195 Country of test Country of test Country of test
196 <NA> <NA> <NA>
197 Country of test Country of test Country of test
198 Country of test Country of test Country of test
199 Other country Other country Other country
200 Country of test Country of test Country of test
201 Country of test Country of test Country of test
202 Country of test Country of test Country of test
203 Country of test Country of test Country of test
204 Country of test Country of test Country of test
205 Country of test Country of test Country of test
206 Country of test Country of test Country of test
207 Country of test Country of test Country of test
208 Country of test Country of test Country of test
209 Country of test Country of test Country of test
210 Country of test Country of test Country of test
211 Country of test Country of test Country of test
212 <NA> Country of test Country of test
213 Country of test Country of test Country of test
214 Country of test Country of test Country of test
215 <NA> <NA> <NA>
216 Country of test Country of test Country of test
217 <NA> <NA> <NA>
218 <NA> Country of test Country of test
219 <NA> <NA> <NA>
220 Country of test Country of test Country of test
221 Country of test Country of test Country of test
222 Country of test Country of test Country of test
223 Country of test Country of test Country of test
224 Country of test Country of test Country of test
225 Other country Country of test Country of test
226 Other country Other country Country of test
227 Country of test Country of test Country of test
228 <NA> <NA> <NA>
229 Country of test Country of test Country of test
230 Country of test Country of test Country of test
231 Other country Country of test Country of test
232 Country of test Country of test Country of test
233 Country of test Country of test Country of test
234 <NA> <NA> <NA>
235 <NA> Country of test <NA>
236 Country of test Country of test Country of test
237 Country of test Country of test Country of test
238 Country of test Country of test Country of test
239 <NA> <NA> <NA>
240 Country of test Country of test Country of test
241 Country of test Country of test Country of test
242 Country of test Country of test Country of test
243 Country of test Country of test Country of test
244 Country of test Country of test Country of test
245 Country of test Country of test Country of test
246 Country of test Country of test Country of test
247 Country of test Country of test Country of test
248 Other country Country of test Country of test
249 Country of test Country of test Country of test
250 Country of test Country of test Country of test
251 Country of test Country of test Country of test
252 Country of test Country of test Other country
253 Country of test Country of test Country of test
254 Country of test Country of test Country of test
255 Country of test Country of test Country of test
256 <NA> <NA> <NA>
257 Country of test Country of test Country of test
258 Country of test <NA> <NA>
259 Country of test Country of test Country of test
260 <NA> <NA> <NA>
261 Other country Country of test Country of test
262 <NA> <NA> <NA>
263 Country of test <NA> <NA>
264 Country of test Country of test Country of test
265 <NA> <NA> <NA>
266 Country of test Country of test Country of test
267 Country of test Country of test Country of test
268 <NA> <NA> <NA>
269 Country of test Country of test Country of test
270 Other country Country of test Country of test
271 <NA> <NA> <NA>
272 Other country Country of test Country of test
273 Country of test Country of test Country of test
274 Country of test Country of test Country of test
275 Other country Country of test Country of test
276 Country of test Country of test Country of test
277 Country of test Country of test Country of test
278 Country of test Country of test Country of test
279 Country of test Country of test Country of test
280 Country of test Country of test Country of test
281 Country of test Country of test Country of test
282 Country of test Country of test Country of test
283 Country of test Country of test Country of test
284 Country of test Country of test Country of test
285 Country of test Country of test Country of test
286 Country of test Country of test Country of test
287 Country of test Country of test Country of test
288 Country of test Country of test Country of test
289 Country of test Country of test Country of test
290 Country of test Country of test Country of test
291 Country of test Country of test Country of test
292 Country of test Country of test Country of test
293 Country of test Country of test Country of test
294 Country of test Country of test Country of test
295 Country of test Country of test Country of test
296 Country of test Country of test Country of test
297 Country of test Country of test Country of test
298 Other country Country of test Country of test
299 Country of test Country of test Country of test
300 Country of test Country of test Country of test
301 Country of test <NA> <NA>
302 Country of test Country of test Country of test
303 Country of test Country of test Country of test
304 Country of test Country of test Country of test
305 Other country Country of test Country of test
306 Other country Country of test Country of test
307 <NA> Other country Other country
308 Country of test Country of test Country of test
309 <NA> <NA> <NA>
310 Country of test Country of test Country of test
311 Country of test Country of test Country of test
312 Country of test Country of test Other country
313 Other country Country of test Country of test
314 Country of test Country of test Country of test
315 Other country Country of test Country of test
316 Country of test Other country I don't know.
317 Country of test Country of test Country of test
318 Country of test Country of test Country of test
319 Country of test Country of test Country of test
320 Country of test Country of test Country of test
321 Country of test Country of test Country of test
322 Country of test Country of test Country of test
323 Country of test Country of test Country of test
324 <NA> <NA> <NA>
325 <NA> <NA> <NA>
326 Country of test Country of test Country of test
327 <NA> <NA> <NA>
328 Country of test Country of test Country of test
329 <NA> <NA> Country of test
330 Country of test Country of test Country of test
331 Country of test Country of test Country of test
332 <NA> <NA> <NA>
333 Country of test Country of test Other country
334 Country of test Country of test Country of test
335 Country of test Country of test Country of test
336 Country of test Country of test Country of test
337 Country of test Country of test Country of test
338 Country of test Country of test Country of test
339 Other country Country of test Country of test
340 Country of test Country of test Country of test
341 Country of test Country of test Country of test
342 Country of test Country of test Country of test
343 Country of test Country of test Country of test
344 Country of test Country of test Country of test
345 Other country Country of test Country of test
346 <NA> <NA> <NA>
347 <NA> <NA> <NA>
348 Country of test Country of test Country of test
349 Country of test Country of test Country of test
350 Country of test Country of test Country of test
351 Country of test Country of test Country of test
352 Country of test Country of test Country of test
353 Other country Country of test Country of test
354 Country of test Country of test Country of test
355 Country of test Country of test Country of test
356 Other country Country of test Country of test
357 Country of test Country of test Country of test
358 Country of test Country of test Country of test
359 Country of test Country of test Country of test
360 Country of test Country of test Country of test
361 Country of test Country of test Country of test
362 Country of test Country of test Country of test
363 Country of test Country of test Country of test
364 Country of test Country of test Country of test
365 Country of test Country of test Country of test
366 Other country Country of test Country of test
367 Country of test Country of test Country of test
368 Country of test Country of test Country of test
369 Country of test Country of test Country of test
370 Country of test Country of test Country of test
371 <NA> <NA> <NA>
372 Other country Country of test Country of test
373 Country of test Country of test Country of test
374 Country of test Country of test Country of test
375 Country of test Country of test Country of test
376 Country of test Country of test Country of test
377 Country of test Country of test Country of test
378 Country of test Country of test Country of test
379 <NA> <NA> <NA>
380 Country of test Country of test Country of test
381 Country of test Country of test Country of test
382 Country of test Country of test Country of test
383 Country of test Country of test Country of test
384 Country of test Country of test Country of test
385 Country of test Country of test Country of test
386 Country of test I don't know. Other country
387 <NA> Country of test <NA>
388 Country of test Country of test Country of test
389 Other country Country of test Country of test
390 Country of test Country of test Country of test
391 Country of test Country of test Country of test
392 Country of test Country of test Country of test
393 Country of test Country of test Country of test
394 Country of test Country of test Country of test
395 <NA> <NA> <NA>
396 Country of test Country of test Country of test
397 <NA> <NA> <NA>
398 Country of test Country of test Country of test
399 <NA> <NA> <NA>
400 Country of test Country of test Country of test
401 <NA> I don't know. Other country
402 Country of test Country of test Country of test
403 Other country Other country Other country
404 Country of test Country of test Country of test
405 Country of test Country of test Country of test
406 Country of test Country of test Country of test
407 Country of test Country of test Country of test
408 Country of test Country of test Country of test
409 Country of test Country of test Country of test
410 <NA> <NA> I don't know.
411 Country of test I don't know. Other country
412 Country of test Country of test Country of test
413 Country of test Country of test Country of test
414 Country of test Country of test Country of test
415 Other country Country of test Country of test
416 Country of test Country of test Country of test
417 Country of test Country of test Country of test
418 <NA> <NA> <NA>
419 Country of test Country of test Country of test
420 Country of test Country of test Country of test
421 Country of test Country of test Country of test
422 Country of test Country of test Country of test
423 Country of test Country of test Country of test
424 Country of test Country of test Country of test
425 <NA> <NA> <NA>
426 <NA> <NA> <NA>
427 Country of test Country of test Country of test
428 Country of test Country of test Country of test
429 Country of test Country of test Country of test
430 Country of test Country of test Country of test
431 Country of test Country of test Country of test
432 Country of test Country of test Country of test
433 Country of test <NA> <NA>
434 Country of test Country of test Country of test
435 <NA> <NA> <NA>
436 Country of test Country of test Country of test
437 Country of test Country of test Country of test
438 Country of test Country of test Country of test
439 Country of test Country of test Country of test
440 Country of test Country of test Country of test
441 Country of test Country of test Country of test
442 <NA> Country of test Country of test
443 Country of test Country of test Country of test
444 Country of test Country of test Country of test
445 Country of test Country of test Country of test
446 Country of test Country of test Country of test
447 Country of test Country of test Country of test
448 Country of test Country of test Country of test
449 Country of test Country of test Country of test
450 Country of test Country of test Country of test
451 Country of test <NA> <NA>
452 Country of test Country of test Country of test
453 Country of test Country of test Country of test
454 Country of test Country of test Country of test
455 Country of test Country of test Country of test
456 <NA> Country of test Country of test
457 Country of test Country of test Country of test
458 Country of test Country of test Country of test
459 Country of test Country of test Country of test
460 Country of test Country of test Country of test
461 Other country Country of test Country of test
462 Country of test Country of test Country of test
463 Country of test Country of test Country of test
464 <NA> Country of test Country of test
465 <NA> Country of test Country of test
466 Country of test Country of test Country of test
467 Country of test Country of test Country of test
468 Country of test Country of test Country of test
469 Country of test Country of test Country of test
470 Country of test Country of test Country of test
471 Country of test Country of test Country of test
472 Country of test Country of test Country of test
473 Country of test Country of test Country of test
474 Country of test Country of test Country of test
475 Country of test Other country Other country
476 Country of test Country of test Country of test
477 Country of test Country of test Country of test
478 Other country Country of test Country of test
479 Country of test <NA> <NA>
480 Country of test Country of test Country of test
481 Country of test Country of test Country of test
482 Country of test Country of test Country of test
483 Country of test Country of test Country of test
484 Country of test Country of test Country of test
485 Country of test Country of test Country of test
486 <NA> Country of test Country of test
487 Country of test Country of test Country of test
488 Country of test Country of test Country of test
489 Country of test Country of test Country of test
490 Country of test Country of test Country of test
491 Country of test Country of test Country of test
492 Country of test Country of test Country of test
493 Country of test Country of test Country of test
494 Country of test Country of test Country of test
495 Country of test Country of test Country of test
496 <NA> Country of test Country of test
497 Country of test Country of test Country of test
498 Country of test Country of test Country of test
499 Country of test Country of test Country of test
500 Other country Country of test Other country
# ℹ 613,244 more rows
When you come to building your statistical models you often need to use numeric data, you can find the columns that have only numbers in them by the following. Be warned though, sometimes there are numeric fields which have a few words in them, so R treats them as characters. Use the PISA codebook to help work out where those numbers are.
Write a select statement to show all the fields that are to do with well being and health, e.g. WB150Q01HA “How is your health?”
answer
PISA_2022 %>%select(starts_with("WB15"))
[EXTENSION] Adjust your answer to Q3 so that you select the gender ST004D01T and the ID CNTSTUID of each student in addition to the ST254____ fields looking at digital devices in the home:
Not only does the PISA_2022 dataset have a huge number of columns, it has hundred of thousands of rows. We want to filter this down to the students that we are interested in, i.e. filter out data that isn’t useful for our analysis. If we only wanted the results that were Male, we could do the following:
# A tibble: 307,906 × 5
CNT ESCS ST004D01T ST003D02T PV1MATH
<fct> <dbl> <fct> <fct> <dbl>
1 Albania -3.05 Male February 308.
2 Albania -0.187 Male August 268.
3 Albania 1.09 Male May 534.
4 Albania -0.762 Male May 382.
5 Albania -1.98 Male October 425.
6 Albania 0.063 Male April 463.
7 Albania -0.170 Male May 236.
8 Albania -2.58 Male August 327.
9 Albania -1.09 Male March 326.
10 Albania -0.334 Male October 428.
11 Albania -2.10 Male January 278.
12 Albania -1.10 Male October 395.
13 Albania -1.20 Male March 383.
14 Albania -0.150 Male May 301.
15 Albania -1.71 Male July 329.
16 Albania -1.67 Male December 487.
17 Albania -0.420 Male October 338.
18 Albania 0.675 Male February 310.
19 Albania -0.872 Male August 314.
20 Albania 0.533 Male March 174.
21 Albania NA Male May 328.
22 Albania -0.469 Male May 366.
23 Albania -0.858 Male April 329.
24 Albania -2.41 Male June 287.
25 Albania -1.22 Male November 370.
26 Albania -1.72 Male June 280.
27 Albania -2.44 Male May 437.
28 Albania 0.672 Male July 438.
29 Albania NA Male August 299.
30 Albania NA Male January 381.
31 Albania 0.641 Male March 445.
32 Albania -1.57 Male June 495.
33 Albania 0.358 Male October 278.
34 Albania -0.0888 Male September 473.
35 Albania NA Male July 277.
36 Albania -1.18 Male May 210.
37 Albania -1.18 Male September 305.
38 Albania 0.991 Male June 411.
39 Albania -0.083 Male August 332.
40 Albania NA Male June 283.
41 Albania -0.344 Male December 404.
42 Albania 0.381 Male December 304.
43 Albania 0.416 Male October 205.
44 Albania -0.171 Male November 348.
45 Albania -1.62 Male April 478.
46 Albania NA Male June 285.
47 Albania 0.592 Male January 398.
48 Albania NA Male September 381.
49 Albania -1.08 Male August 318.
50 Albania 1.04 Male April 388.
51 Albania -2.58 Male December 364.
52 Albania -0.912 Male October 422.
53 Albania -1.76 Male June 223.
54 Albania 0.508 Male June 452.
55 Albania NA Male January 516.
56 Albania NA Male July 496.
57 Albania -1.52 Male June 258.
58 Albania 0.796 Male February 296.
59 Albania 0.720 Male October 463.
60 Albania -2.30 Male September 293.
61 Albania -0.512 Male February 207.
62 Albania -1.21 Male December 270.
63 Albania -0.559 Male July 236.
64 Albania 1.16 Male September 338.
65 Albania -1.17 Male May 408.
66 Albania 0.328 Male March 460.
67 Albania NA Male September 339.
68 Albania 1.12 Male October 427.
69 Albania -1.80 Male July 275.
70 Albania -1.30 Male May 397.
71 Albania -1.92 Male December 333.
72 Albania NA Male October 610.
73 Albania -0.605 Male August 334.
74 Albania NA Male January 338.
75 Albania 0.268 Male December 254.
76 Albania -0.545 Male September 256.
77 Albania -3.23 Male February 275.
78 Albania 0.996 Male March 272.
79 Albania -0.324 Male June 313.
80 Albania -0.838 Male May 395.
81 Albania -1.35 Male September 446.
82 Albania 0.529 Male June 322.
83 Albania -0.716 Male June 238.
84 Albania -0.644 Male May 432.
85 Albania 0.136 Male October 458.
86 Albania 0.160 Male October 353.
87 Albania -1.02 Male January 309.
88 Albania -0.335 Male December 343.
89 Albania 0.859 Male December 202.
90 Albania -0.262 Male August 283.
91 Albania -1.49 Male April 237.
92 Albania -1.51 Male April 353.
93 Albania -2.14 Male December 230.
94 Albania -0.33 Male October 218.
95 Albania -1.25 Male July 197.
96 Albania NA Male January 300.
97 Albania 1.13 Male February 265.
98 Albania -2.27 Male September 278.
99 Albania -2.55 Male May 444.
100 Albania -2.00 Male May 259.
101 Albania -1.75 Male July 252.
102 Albania -1.88 Male July 383.
103 Albania -0.723 Male November 553.
104 Albania -0.608 Male July 260.
105 Albania 0.814 Male July 423.
106 Albania -0.922 Male April 287.
107 Albania -1.16 Male October 441.
108 Albania -1.24 Male January 328.
109 Albania 0.217 Male April 498.
110 Albania -1.97 Male February 460.
111 Albania -3.09 Male December 362.
112 Albania NA Male May 384.
113 Albania -0.853 Male May 280.
114 Albania NA Male April 342.
115 Albania 0.0068 Male June 284.
116 Albania -0.113 Male May 254.
117 Albania -2.52 Male October 373.
118 Albania -1.35 Male April 343.
119 Albania -0.390 Male June 612.
120 Albania 0.195 Male October 318.
121 Albania -1.47 Male May 470.
122 Albania 0.229 Male January 489.
123 Albania NA Male July 406.
124 Albania 0.265 Male February 555.
125 Albania -2.35 Male January 448.
126 Albania -1.97 Male October 299.
127 Albania -1.32 Male November 331.
128 Albania -1.13 Male June 345.
129 Albania -0.980 Male November 369.
130 Albania -0.108 Male April 457.
131 Albania -1.62 Male August 361.
132 Albania -2.29 Male May 351.
133 Albania 0.828 Male July 266.
134 Albania NA Male November 223.
135 Albania 0.549 Male April 322.
136 Albania -0.546 Male January 425.
137 Albania 0.623 Male July 363.
138 Albania -0.560 Male June 482.
139 Albania -0.830 Male June 385.
140 Albania -1.63 Male January 414.
141 Albania 1.19 Male June 515.
142 Albania -0.851 Male January 584.
143 Albania -1.65 Male November 488.
144 Albania -0.593 Male July 256.
145 Albania 0 Male April 229.
146 Albania -1.03 Male January 277.
147 Albania -1.58 Male September 216.
148 Albania -2.05 Male September 270.
149 Albania -1.23 Male March 282.
150 Albania -0.0101 Male September 349.
151 Albania -0.878 Male September 264.
152 Albania 0.425 Male July 358.
153 Albania -1.53 Male June 398.
154 Albania -0.795 Male February 340.
155 Albania -0.602 Male September 316.
156 Albania 0.382 Male July 255.
157 Albania -0.424 Male August 447.
158 Albania -1.02 Male October 318.
159 Albania -0.721 Male January 370.
160 Albania -0.730 Male June 359.
161 Albania NA Male April 392.
162 Albania 1.10 Male October 645.
163 Albania -1.39 Male June 296.
164 Albania 0.674 Male August 379.
165 Albania 1.01 Male July 499.
166 Albania -1.39 Male October 456.
167 Albania -1.80 Male March 431.
168 Albania -1.23 Male June 359.
169 Albania -0.251 Male January 244.
170 Albania 1.06 Male June 429.
171 Albania NA Male October 395.
172 Albania 0.472 Male June 509.
173 Albania -1.42 Male January 329.
174 Albania -1.50 Male October 331.
175 Albania -1.72 Male September 400.
176 Albania -1.32 Male July 306.
177 Albania -1.20 Male September 366.
178 Albania 0.376 Male March 288.
179 Albania NA Male February 304.
180 Albania 0.773 Male August 479.
181 Albania -1.22 Male May 212.
182 Albania -1.19 Male January 336.
183 Albania -0.338 Male June 367.
184 Albania -0.0522 Male May 240.
185 Albania -0.750 Male July 479.
186 Albania -0.924 Male March 354.
187 Albania 0.844 Male August 556.
188 Albania -1.61 Male January 249.
189 Albania -0.135 Male August 490.
190 Albania -2.34 Male February 214.
191 Albania 0.512 Male July 279.
192 Albania -0.925 Male June 371.
193 Albania 0.868 Male March 175.
194 Albania 0.366 Male July 432.
195 Albania -0.518 Male September 352.
196 Albania -1.80 Male March 286.
197 Albania -1.32 Male May 397.
198 Albania -0.0169 Male September 250.
199 Albania -2.05 Male February 391.
200 Albania -2.03 Male December 342.
201 Albania -0.312 Male July 370.
202 Albania 0.550 Male March 242.
203 Albania 0.459 Male November 297.
204 Albania 0.499 Male October 300.
205 Albania 1.20 Male November 427.
206 Albania -2.59 Male September 372.
207 Albania -2.85 Male February 294.
208 Albania NA Male March 414.
209 Albania NA Male May 305.
210 Albania -0.302 Male September 371.
211 Albania -2.47 Male March 353.
212 Albania -1.32 Male July 367.
213 Albania -1.33 Male June 382.
214 Albania -0.565 Male April 320.
215 Albania 0.122 Male March 313.
216 Albania -1.59 Male February 335.
217 Albania -2.14 Male October 289.
218 Albania -0.866 Male January 447.
219 Albania -1.52 Male February 246.
220 Albania -1.67 Male March 444.
221 Albania -2.58 Male August 179.
222 Albania -0.652 Male June 260.
223 Albania NA Male August 268.
224 Albania 0.588 Male May 356.
225 Albania -0.908 Male September 246.
226 Albania 1.10 Male May 231.
227 Albania 1.38 Male December 513.
228 Albania -1.73 Male November 238.
229 Albania -2.40 Male August 479.
230 Albania -1.55 Male January 444.
231 Albania -1.59 Male November 265.
232 Albania -1.65 Male May 284.
233 Albania -1.23 Male March 348.
234 Albania 0.499 Male November 381.
235 Albania -0.239 Male March 470.
236 Albania -1.04 Male April 382.
237 Albania -1.77 Male March 295.
238 Albania 2.34 Male September 300.
239 Albania -0.531 Male August 267.
240 Albania 0.560 Male July 531.
241 Albania 0.436 Male January 183.
242 Albania -0.451 Male April 482.
243 Albania 0.468 Male August 269.
244 Albania -1.07 Male October 414.
245 Albania 0.199 Male December 308.
246 Albania 0.505 Male November 355.
247 Albania -1.19 Male August 198.
248 Albania 0.610 Male October 275.
249 Albania -1.71 Male January 558.
250 Albania 1.18 Male November 436.
251 Albania -2.67 Male December 317.
252 Albania 1.30 Male October 204.
253 Albania -0.39 Male September 324.
254 Albania 0.523 Male September 306.
255 Albania 0.232 Male September 272.
256 Albania -2.15 Male May 392.
257 Albania -0.552 Male September 292.
258 Albania -1.34 Male February 391.
259 Albania -1.16 Male October 265.
260 Albania 1.22 Male May 579.
261 Albania 0.206 Male February 181.
262 Albania -0.916 Male October 273.
263 Albania -0.890 Male September 354.
264 Albania -2.02 Male February 587.
265 Albania -1.63 Male April 449.
266 Albania -1.99 Male January 295.
267 Albania 0.190 Male September 456.
268 Albania -0.772 Male December 418.
269 Albania -1.16 Male September 388.
270 Albania -1.57 Male September 352.
271 Albania 0.240 Male November 482.
272 Albania -2.29 Male August 290.
273 Albania -1.03 Male April 239.
274 Albania NA Male May 366.
275 Albania -0.658 Male March 476.
276 Albania -1.25 Male October 341.
277 Albania -0.394 Male January 237.
278 Albania -0.157 Male October 409.
279 Albania 0.804 Male May 322.
280 Albania -2.70 Male May 271.
281 Albania NA Male October 303.
282 Albania NA Male May 407.
283 Albania -1.75 Male April 311.
284 Albania -0.349 Male November 335.
285 Albania -1.11 Male November 274.
286 Albania -0.426 Male November 345.
287 Albania 0.435 Male August 242.
288 Albania -0.914 Male January 220.
289 Albania -1.97 Male July 341.
290 Albania -0.666 Male October 378.
291 Albania -1.03 Male November 429.
292 Albania 0.874 Male August 301.
293 Albania -0.0625 Male June 282.
294 Albania -0.627 Male July 361.
295 Albania 1.11 Male June 253.
296 Albania NA Male April 466.
297 Albania -1.81 Male September 344.
298 Albania NA Male November 333.
299 Albania -1.65 Male January 310.
300 Albania -1.52 Male May 327.
301 Albania -0.899 Male January 272.
302 Albania -0.519 Male October 397.
303 Albania 1.41 Male November 284.
304 Albania 0.556 Male August 380.
305 Albania -0.929 Male March 499.
306 Albania -1.41 Male September 286.
307 Albania -1.83 Male October 481.
308 Albania 0.668 Male August 528.
309 Albania -0.677 Male January 398.
310 Albania NA Male May 304.
311 Albania 0.525 Male April 309.
312 Albania 0.357 Male August 630.
313 Albania -1.71 Male August 275.
314 Albania 0.663 Male October 494.
315 Albania -2.01 Male September 266.
316 Albania -0.513 Male July 417.
317 Albania NA Male May 341.
318 Albania 1.05 Male November 368.
319 Albania -1.73 Male February 398.
320 Albania -0.547 Male July 402.
321 Albania -1.65 Male January 443.
322 Albania -0.311 Male January 201.
323 Albania -1.02 Male October 350.
324 Albania -1.04 Male January 323.
325 Albania -0.528 Male October 357.
326 Albania NA Male July 292.
327 Albania NA Male February 378.
328 Albania -0.713 Male January 273.
329 Albania -2.41 Male November 483.
330 Albania -1.15 Male April 244.
331 Albania -1.52 Male February 343.
332 Albania -0.101 Male August 359.
333 Albania 0.569 Male June 435.
334 Albania 0.233 Male February 402.
335 Albania -0.545 Male March 308.
336 Albania -1.04 Male February 448.
337 Albania 0.854 Male June 434.
338 Albania 0.704 Male October 252.
339 Albania -0.930 Male March 328.
340 Albania -0.998 Male May 411.
341 Albania 0.413 Male June 363.
342 Albania NA Male September 431.
343 Albania -0.672 Male December 460.
344 Albania -0.566 Male June 312.
345 Albania -2.86 Male November 328.
346 Albania 0.238 Male May 298.
347 Albania -0.616 Male November 294.
348 Albania 1.32 Male September 349.
349 Albania -0.924 Male September 245.
350 Albania 0.591 Male April 453.
351 Albania 0.0498 Male March 448.
352 Albania -1.40 Male October 382.
353 Albania -3.07 Male June 424.
354 Albania 0.734 Male July 389.
355 Albania -0.446 Male January 453.
356 Albania -0.353 Male August 488.
357 Albania 0.380 Male February 367.
358 Albania -1.62 Male December 562.
359 Albania -0.666 Male June 498.
360 Albania 0.649 Male December 356.
361 Albania -0.709 Male May 295.
362 Albania -2.07 Male March 363.
363 Albania 0.533 Male November 534.
364 Albania -1.68 Male January 259.
365 Albania 0.776 Male April 401.
366 Albania -0.584 Male May 431.
367 Albania -0.938 Male October 368.
368 Albania -1.47 Male October 293.
369 Albania 0.096 Male August 486.
370 Albania -0.707 Male February 436.
371 Albania 0.638 Male July 416.
372 Albania -1.73 Male May 524.
373 Albania -0.758 Male January 369.
374 Albania -0.381 Male February 221.
375 Albania NA Male January 267.
376 Albania -1.58 Male August 328.
377 Albania 0.287 Male August 268.
378 Albania -0.758 Male July 327.
379 Albania -1.09 Male August 210.
380 Albania -1.03 Male April 393.
381 Albania -1.41 Male November 273.
382 Albania -1.60 Male August 414.
383 Albania NA Male February 371.
384 Albania -0.587 Male January 286.
385 Albania 0.532 Male April 570.
386 Albania -0.168 Male April 257.
387 Albania -1.47 Male November 338.
388 Albania -0.636 Male January 254.
389 Albania -1.93 Male April 315.
390 Albania -1.29 Male December 415.
391 Albania -0.791 Male June 470.
392 Albania -1.44 Male November 284.
393 Albania 0.098 Male October 328.
394 Albania -0.678 Male August 281.
395 Albania 0.886 Male May 292.
396 Albania -1.10 Male October 279.
397 Albania -3.06 Male November 320.
398 Albania -1.05 Male December 306.
399 Albania -1.13 Male May 337.
400 Albania 0.705 Male August 463.
401 Albania -1.66 Male October 299.
402 Albania -0.389 Male January 373.
403 Albania 0.936 Male April 489.
404 Albania 0.114 Male June 353.
405 Albania -2.40 Male May 403.
406 Albania -0.179 Male June 334.
407 Albania -0.888 Male June 302.
408 Albania -1.94 Male March 440.
409 Albania NA Male January 284.
410 Albania -0.207 Male January 428.
411 Albania NA Male June 346.
412 Albania NA Male March 345.
413 Albania 0.417 Male March 576.
414 Albania -0.345 Male March 555.
415 Albania -0.612 Male July 246.
416 Albania 0.0009 Male October 265.
417 Albania -1.06 Male December 439.
418 Albania -1.64 Male March 409.
419 Albania -0.424 Male August 489.
420 Albania -1.30 Male December 324.
421 Albania 0.791 Male July 521.
422 Albania NA Male September 405.
423 Albania -0.761 Male December 350.
424 Albania -2.67 Male June 504.
425 Albania -0.0129 Male October 413.
426 Albania 0.649 Male January 392.
427 Albania 0.55 Male October 365.
428 Albania 1.06 Male June 561.
429 Albania -0.928 Male December 302.
430 Albania -1.98 Male May 300.
431 Albania -2.35 Male May 352.
432 Albania -0.996 Male November 361.
433 Albania 1.27 Male February 501.
434 Albania -0.0553 Male January 491.
435 Albania 1.48 Male October 441.
436 Albania -0.881 Male March 271.
437 Albania -0.178 Male January 492.
438 Albania 1.16 Male May 353.
439 Albania 0.340 Male September 258.
440 Albania -0.0231 Male March 313.
441 Albania -1.48 Male March 307.
442 Albania -0.384 Male November 273.
443 Albania 0.0847 Male July 344.
444 Albania -2.55 Male January 324.
445 Albania -0.0818 Male July 339.
446 Albania -2.07 Male November 332.
447 Albania -0.894 Male January 338.
448 Albania 0.223 Male September 255.
449 Albania -2.05 Male October 356.
450 Albania -1.06 Male February 320.
451 Albania 0.722 Male July 366.
452 Albania -0.195 Male August 298.
453 Albania 0.873 Male September 547.
454 Albania 0.0134 Male September 439.
455 Albania -1.14 Male October 271.
456 Albania -3.17 Male April 263.
457 Albania -1.72 Male November 418.
458 Albania -2.44 Male March 463.
459 Albania -1.00 Male May 372.
460 Albania -0.876 Male July 290.
461 Albania NA Male July 341.
462 Albania -1.48 Male December 233.
463 Albania -1.80 Male February 430.
464 Albania -1.43 Male August 245.
465 Albania -0.109 Male September 351.
466 Albania -0.762 Male July 326.
467 Albania NA Male October 248.
468 Albania -0.957 Male June 393.
469 Albania -2.01 Male May 328.
470 Albania 0.717 Male April 284.
471 Albania NA Male December 442.
472 Albania -0.675 Male March 302.
473 Albania 0.602 Male March 399.
474 Albania NA Male June 461.
475 Albania -0.162 Male November 494.
476 Albania -1.03 Male January 370.
477 Albania -1.40 Male April 329.
478 Albania NA Male May 328.
479 Albania -0.649 Male November 341.
480 Albania -1.84 Male December 392.
481 Albania -0.504 Male November 333.
482 Albania -0.0671 Male October 438.
483 Albania 1.17 Male October 384.
484 Albania 0.283 Male January 426.
485 Albania 0.478 Male April 328.
486 Albania -0.240 Male December 248.
487 Albania -1.80 Male May 299.
488 Albania 0.273 Male August 468.
489 Albania -0.872 Male July 302.
490 Albania -2.50 Male June 283.
491 Albania 0.035 Male January 392.
492 Albania -1.05 Male April 336.
493 Albania -0.864 Male September 278.
494 Albania -1.59 Male May 195.
495 Albania -1.43 Male August 355.
496 Albania -1.29 Male October 308.
497 Albania -0.0159 Male July 230.
498 Albania NA Male April 406.
499 Albania -1.52 Male September 461.
500 Albania 0.486 Male April 323.
# ℹ 307,406 more rows
We can combine filter commands to look for Males born in September and where the PV1MATH figure is greater than 750. We can list multiple criteria in the filter by separating the criteria with commas, using commas mean that all of these criteria need to be TRUE for a row to be returned. A comma in a filter is the equivalent of an AND, :
# A tibble: 52 × 5
CNT ESCS ST004D01T ST003D02T PV1MATH
<fct> <dbl> <fct> <fct> <dbl>
1 Australia 0.994 Male September 770.
2 Australia 0.837 Male September 758.
3 Australia 1.22 Male September 807.
4 Canada 1.06 Male September 752.
5 Canada 1.04 Male September 788.
6 Canada 1.21 Male September 781.
7 Canada 0.804 Male September 750.
8 Chinese Taipei 0.842 Male September 753.
9 Chinese Taipei 0.488 Male September 794.
10 Chinese Taipei 1.23 Male September 794.
11 Chinese Taipei 0.793 Male September 841.
12 Chinese Taipei 0.905 Male September 777.
13 Chinese Taipei 1.33 Male September 802.
14 Czech Republic 1.13 Male September 781.
15 Hong Kong (China) 0.931 Male September 758.
16 Hong Kong (China) 0.662 Male September 805.
17 Hong Kong (China) 0.936 Male September 880.
18 Hong Kong (China) -0.594 Male September 781.
19 Hong Kong (China) 0.328 Male September 796.
20 Hong Kong (China) -0.832 Male September 752.
21 Hong Kong (China) 1.48 Male September 766.
22 Hong Kong (China) 0.649 Male September 751.
23 Japan 0.305 Male September 755.
24 Japan 0.334 Male September 752.
25 Korea 1.14 Male September 752.
26 Korea 0.452 Male September 784.
27 Korea 1.76 Male September 799.
28 Korea 1.36 Male September 752.
29 Macao (China) -0.487 Male September 798.
30 Macao (China) 0.111 Male September 767.
31 Netherlands 1.22 Male September 761.
32 New Zealand 0.392 Male September 760.
33 Singapore 0.376 Male September 756.
34 Singapore 0.982 Male September 758.
35 Singapore 1.57 Male September 797.
36 Singapore 1.03 Male September 784.
37 Singapore 0.536 Male September 751.
38 Singapore 1.58 Male September 897.
39 Singapore 1.29 Male September 755.
40 Singapore 0.395 Male September 767.
41 Singapore 1.36 Male September 782.
42 Singapore 0.212 Male September 813.
43 Singapore -0.0648 Male September 752.
44 Singapore 1.14 Male September 763.
45 Singapore 0.907 Male September 787.
46 Slovak Republic 0.388 Male September 758.
47 Spain 0.958 Male September 779.
48 Switzerland 1.06 Male September 756.
49 Switzerland 1.06 Male September 758.
50 Thailand 0.257 Male September 791.
51 United Arab Emirates 1.08 Male September 823.
52 United Arab Emirates 0.820 Male September 812.
Remember to include the == sign when looking to filter on equality; additionally, you can use != (not equals), >=, <=, >, <.
Remember matching is case sensitive, “september” != “September”
Rather than just looking at September born students, we want to find all the students born in the Autumn term. But if we add a couple more criteria on ST003D02T nothing is returned! Why?
The reason is R is looking for individual students born in September AND October AND November AND December. As a student can only have one birth month there are no students that meet this criteria. We need to use OR :
To create an OR in a filter we use the bar | character, the below looks for all students who are “Male” AND were born in “September” OR “October” OR “November” OR “December”, AND have a PV1MATH > 750.
# A tibble: 194 × 5
CNT ESCS ST004D01T ST003D02T PV1MATH
<fct> <dbl> <fct> <fct> <dbl>
1 Australia 0.994 Male September 770.
2 Australia 1.03 Male October 808.
3 Australia 1.30 Male October 762.
4 Australia 1.21 Male November 764.
5 Australia 0.837 Male September 758.
6 Australia 1.22 Male September 807.
7 Belgium 0.746 Male December 770.
8 Belgium 0.939 Male December 779.
9 Belgium 1.25 Male November 832.
10 Belgium 1.11 Male October 776.
11 Belgium -0.0564 Male October 794.
12 Canada 1.08 Male December 851.
13 Canada 1.06 Male September 752.
14 Canada 0.882 Male November 759.
15 Canada 1.04 Male September 788.
16 Canada 1.21 Male September 781.
17 Canada 1.29 Male October 786.
18 Canada 1.09 Male December 771.
19 Canada 0.352 Male November 829.
20 Canada 1.39 Male December 767.
21 Canada -0.0067 Male October 807.
22 Canada 0.804 Male September 750.
23 Canada 0.0829 Male October 751.
24 Chinese Taipei -0.868 Male December 780.
25 Chinese Taipei 0.842 Male September 753.
26 Chinese Taipei 0.488 Male September 794.
27 Chinese Taipei 1.23 Male September 794.
28 Chinese Taipei 0.581 Male November 755.
29 Chinese Taipei 0.246 Male December 802.
30 Chinese Taipei 0.998 Male December 754.
31 Chinese Taipei 0.793 Male September 841.
32 Chinese Taipei 0.905 Male September 777.
33 Chinese Taipei 1.17 Male November 917.
34 Chinese Taipei -0.135 Male November 786.
35 Chinese Taipei -0.136 Male October 757.
36 Chinese Taipei 0.662 Male October 772.
37 Chinese Taipei 0.915 Male October 772.
38 Chinese Taipei 0.988 Male October 858.
39 Chinese Taipei 1.45 Male November 783.
40 Chinese Taipei 1.56 Male October 820.
41 Chinese Taipei 1.33 Male September 802.
42 Chinese Taipei 0.0278 Male October 756.
43 Chinese Taipei 1.18 Male October 763.
44 Chinese Taipei 0.982 Male November 771.
45 Czech Republic 0.535 Male December 755.
46 Czech Republic 0.842 Male November 755.
47 Czech Republic 1.11 Male December 760.
48 Czech Republic 1.34 Male October 776.
49 Czech Republic 1.13 Male September 781.
50 Czech Republic 1.22 Male November 757.
51 Denmark 1.48 Male November 755.
52 Estonia 0.677 Male October 751.
53 Germany 0.691 Male December 757.
54 Germany 1.16 Male November 767.
55 Hong Kong (China) 0.913 Male December 867.
56 Hong Kong (China) 1.15 Male November 752.
57 Hong Kong (China) 0.931 Male September 758.
58 Hong Kong (China) -0.877 Male October 763.
59 Hong Kong (China) 0.533 Male November 775.
60 Hong Kong (China) -1.65 Male November 756.
61 Hong Kong (China) 0.662 Male September 805.
62 Hong Kong (China) 0.936 Male September 880.
63 Hong Kong (China) -0.594 Male September 781.
64 Hong Kong (China) 0.628 Male November 775.
65 Hong Kong (China) 1.26 Male October 778.
66 Hong Kong (China) 1.29 Male October 818.
67 Hong Kong (China) 1.21 Male October 754.
68 Hong Kong (China) 0.328 Male September 796.
69 Hong Kong (China) -0.666 Male November 753.
70 Hong Kong (China) -0.580 Male October 769.
71 Hong Kong (China) -0.246 Male October 806.
72 Hong Kong (China) 1.23 Male December 797.
73 Hong Kong (China) 0.134 Male December 774.
74 Hong Kong (China) 1.14 Male October 861.
75 Hong Kong (China) NA Male October 790.
76 Hong Kong (China) -0.832 Male September 752.
77 Hong Kong (China) 1.35 Male December 770.
78 Hong Kong (China) 0.299 Male October 824.
79 Hong Kong (China) 1.48 Male September 766.
80 Hong Kong (China) 0.649 Male September 751.
81 Hong Kong (China) 1.08 Male October 764.
82 Hong Kong (China) 0.804 Male October 803.
83 Hungary 0.719 Male December 761.
84 Israel 0.919 Male November 792.
85 Israel 1.29 Male October 756
86 Israel 1.48 Male December 760.
87 Japan -0.648 Male November 770.
88 Japan 0.305 Male September 755.
89 Japan 0.334 Male September 752.
90 Korea 1.20 Male December 773.
91 Korea -0.0955 Male December 764.
92 Korea -0.287 Male November 801.
93 Korea 1.14 Male September 752.
94 Korea 1.84 Male October 787.
95 Korea 1.22 Male November 820.
96 Korea 1.21 Male November 768.
97 Korea 0.970 Male November 751.
98 Korea 1.14 Male October 780.
99 Korea 1.30 Male November 821.
100 Korea -0.541 Male November 789.
101 Korea 1.38 Male December 787.
102 Korea 0.452 Male September 784.
103 Korea 1.76 Male September 799.
104 Korea 0.193 Male October 768.
105 Korea 0.702 Male November 793.
106 Korea 1.36 Male September 752.
107 Korea 0.221 Male November 769.
108 Latvia 0.983 Male November 751.
109 Lithuania 1.39 Male November 802.
110 Macao (China) 0.654 Male December 777.
111 Macao (China) -0.267 Male October 753.
112 Macao (China) -0.487 Male September 798.
113 Macao (China) 0.915 Male December 754.
114 Macao (China) 0.919 Male October 751.
115 Macao (China) 1.15 Male October 755.
116 Macao (China) 0.362 Male November 751.
117 Macao (China) 0.719 Male October 764.
118 Macao (China) -0.271 Male December 754.
119 Macao (China) 0.111 Male September 767.
120 Macao (China) -0.336 Male October 776.
121 Macao (China) -0.288 Male October 781.
122 Macao (China) -0.204 Male December 763.
123 Netherlands -0.575 Male October 766.
124 Netherlands 1.22 Male September 761.
125 Netherlands 1.28 Male October 797.
126 New Zealand 0.730 Male November 775.
127 New Zealand 1.13 Male October 825.
128 New Zealand 0.392 Male September 760.
129 New Zealand 0.613 Male November 753.
130 Poland 0.654 Male December 770.
131 Poland 0.966 Male November 799.
132 Serbia 1.12 Male December 756.
133 Serbia -0.711 Male November 751.
134 Singapore -0.213 Male October 750.
135 Singapore 0.376 Male September 756.
136 Singapore 0.795 Male December 793.
137 Singapore 1.27 Male October 763.
138 Singapore 0.842 Male December 794.
139 Singapore 0.737 Male November 794.
140 Singapore 0.982 Male September 758.
141 Singapore -0.402 Male October 752.
142 Singapore -0.0469 Male October 795.
143 Singapore 1.57 Male September 797.
144 Singapore -0.147 Male October 764.
145 Singapore 1.01 Male October 785.
146 Singapore 1.38 Male December 810.
147 Singapore 1.03 Male September 784.
148 Singapore 0.0358 Male November 782.
149 Singapore 0.824 Male December 755.
150 Singapore 0.536 Male September 751.
151 Singapore 1.58 Male September 897.
152 Singapore 1.29 Male September 755.
153 Singapore 0.793 Male December 768.
154 Singapore 1.30 Male December 769.
155 Singapore 0.674 Male December 764.
156 Singapore 0.935 Male December 806.
157 Singapore 0.950 Male December 793.
158 Singapore 0.395 Male September 767.
159 Singapore 1.36 Male September 782.
160 Singapore 0.970 Male October 757.
161 Singapore 0.212 Male September 813.
162 Singapore 1.13 Male December 796.
163 Singapore 1.39 Male November 767.
164 Singapore 0.826 Male November 842.
165 Singapore -0.0648 Male September 752.
166 Singapore 0.221 Male November 751.
167 Singapore 1.14 Male September 763.
168 Singapore 1.08 Male October 820.
169 Singapore -0.646 Male December 828.
170 Singapore 2.15 Male November 792.
171 Singapore 0.907 Male September 787.
172 Singapore 0.736 Male October 776.
173 Slovak Republic 0.388 Male September 758.
174 Spain 0.958 Male September 779.
175 Spain -1.37 Male October 752.
176 Switzerland 1.06 Male September 756.
177 Switzerland 1.06 Male September 758.
178 Switzerland 1.40 Male December 773.
179 Thailand 2.44 Male October 751.
180 Thailand 0.257 Male September 791.
181 United Arab Emirates 0.482 Male December 761.
182 United Arab Emirates 0.790 Male December 793.
183 United Arab Emirates 0.813 Male November 760.
184 United Arab Emirates 1.04 Male December 755.
185 United Arab Emirates 0.753 Male October 767.
186 United Arab Emirates 1.08 Male September 823.
187 United Arab Emirates 0.820 Male September 812.
188 United Kingdom 1.22 Male October 750.
189 United Kingdom -0.311 Male December 769.
190 United Kingdom 1.64 Male October 791.
191 United Kingdom -0.382 Male October 761.
192 United Kingdom -0.857 Male November 825.
193 United Kingdom 0.883 Male November 850.
194 United States 1.30 Male October 773.
It’s neater, maybe, to use the %in% command, which checks to see if the value in a column is present in a vector, this can mimic the OR/| command:
# show the actual unique values in a field# this might be a slightly smaller set of valuesunique(PISA_2022$ST003D02T)
[1] May February August July January December September
[8] October April March June November <NA>
16 Levels: January February March April May June July August ... No Response
# You might also want to read the label of a fieldattr(PISA_2022$ST003D02T, "label")
[1] "Student (Standardized) Birth - Month"
2.1 Questions
Spot the two errors with the following select statement
PISA_2022 %>%select(CNT, ESCS) %>%#1 you have ESCS in the filter, it needs to be in the select as wellfilter(CNT %in%c("France", "Belgium"), #2 Belgium needs a capital letter#3 the %in% command needs percentages#4 you need a comma (or &) at the end of the line ESCS <0)
Use filter to find all the students with Three or more cars in their home ST251Q01JA. How does this compare to those with no None cars?
Adjust your code in Q5. to find the number of students with Three or more cars in their home ST251Q01JA in Italy, how does this compare with Spain?
answer
PISA_2022 %>%select(CNT, ST251Q01JA) %>%filter(ST251Q01JA =="Three or more", CNT =="Italy")PISA_2022 %>%select(CNT, ST251Q01JA) %>%filter(ST251Q01JA =="Three or more", CNT =="Spain")# EXTENSION:# Note we would need to know the percentage of students # in each country with that number of cars to make a proper# comparison. Spain might have more students taking the PISA# test than Italy, or vice-versaPISA_2022 %>%select(CNT, ST251Q01JA) %>%filter(CNT %in%c("Italy", "Spain")) %>%group_by(CNT) %>%mutate(total_stus =n()) %>%filter(ST251Q01JA =="Three or more") %>%summarise(three_more =n(),per_three_more = three_more/unique(total_stus))
Write a filter to create a table for the number of Female students with reading PV1READ scores lower than 400 in the United Kingdom, store the result as read_low_female, repeat but for Male students and store as read_low_male. Use nrow() to work out if there are more males or females with a low reading score in the UK
answer
read_low_female <- PISA_2022 %>%filter(CNT =="United Kingdom", PV1READ <400, ST004D01T =="Female")read_low_male <- PISA_2022 %>%filter(CNT =="United Kingdom", PV1READ <400, ST004D01T =="Male")nrow(read_low_female)nrow(read_low_male)# You could also pipe the whole dataframe into nrow()PISA_2022 %>%filter(CNT =="United Kingdom", PV1READ <400, ST004D01T =="Female") %>%nrow()
How many students in the United Kingdom had no television ST254Q01JAOR no connection to the internet ST250Q05JA. HINT: use levels(PISA_2022$ST254Q01JA) to look at the levels available for each column.
Very often when dealing with datasets such as PISA or TIMSS, the column names can be very confusing without a reference key, e.g. ST004D01T, OCOD3 and ST261Q04JA. To rename columns in the tidyverse we use the rename(<new_name> = <old_name>) command. For example, if you wanted to rename the rather confusingly named student column for gender, also known as ST004D01T, and the column for having a having enough digital resources in school, also known as IC172Q01JA, you could use:
CNT gender
Spain : 30800 Female :305759
United Arab Emirates: 24600 Male :307906
Canada : 23073 Valid Skip : 0
Kazakhstan : 19769 Not Applicable: 0
Indonesia : 13439 Invalid : 0
Australia : 13437 No Response : 0
(Other) :488626 NA's : 79
dig_resources
Agree :183233
Disagree : 70595
Strongly agree : 49276
Strongly disagree: 35223
Valid Skip : 0
(Other) : 0
NA's :275417
If you want to change the name of the column so that it stays when you need to perform another calculation, remember to assign the renamed dataframe back to the original dataframe. But be warned, you’ll need to reload the full dataset to restore the original names:
So far we have looked at ways to return rows that meet certain criteria. Using group_by and summarise we can start to analyse data for different groups of students. For example, let’s look at the number of students who don’t have internet connections at home besides a mobile phone ST250Q05JA:
Line 2 makes groups within PISA_2022 using the unique values of ST250Q05JA
3
Line 3, these groups are then passed to summarise, which creates a new column called student_n and stores the number of rows in each ST250Q05JA group using the n() command. summarise only returns the columns it creates, or are in the group_by, everything else is discarded.
# A tibble: 3 × 2
ST250Q05JA student_n
<fct> <int>
1 Yes 525842
2 No 56968
3 <NA> 30934
What we might want to do is look at this data from a country by country perspective, by adding another field to the group_by() command, we then group by the unique combination of countries CNT and internet access ST250Q05JA, e.g. Albania + Yes; Albania + No; Albania + NA; United Arab Emirates + Yes; etc
# A tibble: 238 × 3
# Groups: CNT [80]
CNT ST250Q05JA student_n
<fct> <fct> <int>
1 Albania Yes 4693
2 Albania No 535
3 Albania <NA> 901
4 United Arab Emirates Yes 22206
5 United Arab Emirates No 1116
6 United Arab Emirates <NA> 1278
7 Argentina Yes 10484
8 Argentina No 938
9 Argentina <NA> 689
10 Australia Yes 12808
11 Australia No 200
12 Australia <NA> 429
13 Austria Yes 5975
14 Austria No 89
15 Austria <NA> 87
16 Belgium Yes 8049
17 Belgium No 79
18 Belgium <NA> 158
19 Bulgaria Yes 5621
20 Bulgaria No 141
21 Bulgaria <NA> 345
22 Brazil Yes 9379
23 Brazil No 737
24 Brazil <NA> 682
25 Brunei Darussalam Yes 5021
26 Brunei Darussalam No 465
27 Brunei Darussalam <NA> 90
28 Canada Yes 21206
29 Canada No 332
30 Canada <NA> 1535
31 Switzerland Yes 6541
32 Switzerland No 198
33 Switzerland <NA> 90
34 Chile Yes 5836
35 Chile No 360
36 Chile <NA> 292
37 Colombia Yes 5874
38 Colombia No 1499
39 Colombia <NA> 431
40 Costa Rica <NA> 6113
41 Czech Republic Yes 8284
42 Czech Republic No 74
43 Czech Republic <NA> 102
44 Germany Yes 5318
45 Germany No 96
46 Germany <NA> 702
47 Denmark Yes 5794
48 Denmark No 140
49 Denmark <NA> 266
50 Dominican Republic Yes 5175
51 Dominican Republic No 1222
52 Dominican Republic <NA> 471
53 Spain Yes 29350
54 Spain No 435
55 Spain <NA> 1015
56 Estonia Yes 6237
57 Estonia No 69
58 Estonia <NA> 86
59 Finland Yes 9745
60 Finland No 268
61 Finland <NA> 226
62 France Yes 6335
63 France No 302
64 France <NA> 133
65 United Kingdom Yes 11236
66 United Kingdom No 86
67 United Kingdom <NA> 1650
68 Georgia Yes 5655
69 Georgia No 486
70 Georgia <NA> 442
71 Greece Yes 6160
72 Greece No 135
73 Greece <NA> 108
74 Guatemala Yes 3436
75 Guatemala No 1466
76 Guatemala <NA> 288
77 Hong Kong (China) Yes 5540
78 Hong Kong (China) No 110
79 Hong Kong (China) <NA> 257
80 Croatia Yes 5989
81 Croatia No 64
82 Croatia <NA> 82
83 Hungary Yes 5941
84 Hungary No 68
85 Hungary <NA> 189
86 Indonesia Yes 6067
87 Indonesia No 6949
88 Indonesia <NA> 423
89 Ireland Yes 5407
90 Ireland No 71
91 Ireland <NA> 91
92 Iceland Yes 3246
93 Iceland No 45
94 Iceland <NA> 69
95 Israel Yes 4886
96 Israel No 272
97 Israel <NA> 1093
98 Italy Yes 10026
99 Italy No 445
100 Italy <NA> 81
101 Jamaica Yes 3025
102 Jamaica No 579
103 Jamaica <NA> 269
104 Jordan Yes 5968
105 Jordan No 1594
106 Jordan <NA> 237
107 Japan Yes 5485
108 Japan No 237
109 Japan <NA> 38
110 Kazakhstan Yes 17450
111 Kazakhstan No 2175
112 Kazakhstan <NA> 144
113 Cambodia Yes 1587
114 Cambodia No 3115
115 Cambodia <NA> 577
116 Korea Yes 6331
117 Korea No 53
118 Korea <NA> 70
119 Kosovo Yes 4959
120 Kosovo No 609
121 Kosovo <NA> 459
122 Lithuania Yes 7045
123 Lithuania No 120
124 Lithuania <NA> 92
125 Latvia Yes 5094
126 Latvia No 135
127 Latvia <NA> 144
128 Macao (China) Yes 4318
129 Macao (China) No 58
130 Macao (China) <NA> 8
131 Morocco Yes 4203
132 Morocco No 2470
133 Morocco <NA> 194
134 Republic of Moldova Yes 5784
135 Republic of Moldova No 294
136 Republic of Moldova <NA> 157
137 Mexico Yes 5374
138 Mexico No 810
139 Mexico <NA> 104
140 North Macedonia Yes 5908
141 North Macedonia No 256
142 North Macedonia <NA> 446
143 Malta Yes 2903
144 Malta No 56
145 Malta <NA> 168
146 Montenegro Yes 5397
147 Montenegro No 197
148 Montenegro <NA> 199
149 Mongolia Yes 5143
150 Mongolia No 1735
151 Mongolia <NA> 121
152 Malaysia Yes 4490
153 Malaysia No 2408
154 Malaysia <NA> 171
155 Netherlands Yes 4888
156 Netherlands No 31
157 Netherlands <NA> 127
158 Norway Yes 6212
159 Norway No 65
160 Norway <NA> 334
161 New Zealand Yes 4525
162 New Zealand No 53
163 New Zealand <NA> 104
164 Panama Yes 2892
165 Panama No 1056
166 Panama <NA> 596
167 Peru Yes 4143
168 Peru No 2624
169 Peru <NA> 201
170 Philippines Yes 4876
171 Philippines No 2169
172 Philippines <NA> 148
173 Poland Yes 5905
174 Poland No 62
175 Poland <NA> 44
176 Portugal Yes 6661
177 Portugal No 41
178 Portugal <NA> 91
179 Paraguay Yes 3540
180 Paraguay No 1154
181 Paraguay <NA> 390
182 Palestinian Authority Yes 5922
183 Palestinian Authority No 1557
184 Palestinian Authority <NA> 426
185 Qatar Yes 6604
186 Qatar No 569
187 Qatar <NA> 503
188 Baku (Azerbaijan) Yes 6752
189 Baku (Azerbaijan) No 589
190 Baku (Azerbaijan) <NA> 379
191 Ukrainian regions (18 of 27) Yes 3552
192 Ukrainian regions (18 of 27) No 96
193 Ukrainian regions (18 of 27) <NA> 228
194 Romania Yes 6993
195 Romania No 223
196 Romania <NA> 148
197 Saudi Arabia Yes 6202
198 Saudi Arabia No 535
199 Saudi Arabia <NA> 191
200 Singapore Yes 6511
201 Singapore No 49
202 Singapore <NA> 46
203 El Salvador Yes 4272
204 El Salvador No 1799
205 El Salvador <NA> 634
206 Serbia Yes 6227
207 Serbia No 80
208 Serbia <NA> 106
209 Slovak Republic Yes 5527
210 Slovak Republic No 114
211 Slovak Republic <NA> 183
212 Slovenia Yes 6556
213 Slovenia No 52
214 Slovenia <NA> 113
215 Sweden Yes 5846
216 Sweden No 65
217 Sweden <NA> 161
218 Chinese Taipei Yes 4921
219 Chinese Taipei No 857
220 Chinese Taipei <NA> 79
221 Thailand Yes 6590
222 Thailand No 1828
223 Thailand <NA> 77
224 Türkiye Yes 6130
225 Türkiye No 1068
226 Türkiye <NA> 52
227 Uruguay Yes 5737
228 Uruguay No 648
229 Uruguay <NA> 233
230 United States Yes 4246
231 United States No 99
232 United States <NA> 207
233 Uzbekistan Yes 4291
234 Uzbekistan No 2463
235 Uzbekistan <NA> 539
236 Viet Nam Yes 5337
237 Viet Nam No 629
238 Viet Nam <NA> 102
summarise can also be used to work out statistics by grouping. For example, if you wanted to find out the max, mean and min science grade PV1SCIE by country CNT, you could do the following:
# A tibble: 80 × 4
CNT sci_max sci_mean sci_min
<fct> <dbl> <dbl> <dbl>
1 Albania 724. 376. 74.6
2 United Arab Emirates 842. 436. 0
3 Argentina 751. 415. 128.
4 Australia 875. 508. 108.
5 Austria 804. 494. 170.
6 Belgium 792. 495. 169.
7 Bulgaria 728. 422. 130.
8 Brazil 784. 406. 106.
9 Brunei Darussalam 762. 445. 135.
10 Canada 893. 499. 107.
11 Switzerland 841. 501. 189.
12 Chile 752. 463. 125.
13 Colombia 739. 421. 153.
14 Costa Rica 722. 411. 170.
15 Czech Republic 871. 511. 177.
16 Germany 841. 495. 182.
17 Denmark 806. 480. 197.
18 Dominican Republic 644. 362. 123.
19 Spain 831. 493. 161.
20 Estonia 839. 527. 231.
21 Finland 881. 498. 86.0
22 France 839. 481. 129.
23 United Kingdom 895. 492. 149.
24 Georgia 670. 386. 118.
25 Greece 756. 445. 66.1
26 Guatemala 654. 375. 171.
27 Hong Kong (China) 814. 525. 184.
28 Croatia 773. 483. 142.
29 Hungary 767. 492. 190.
30 Indonesia 700. 395. 80.2
31 Ireland 757. 504. 196.
32 Iceland 781. 448. 65.0
33 Israel 812. 464. 129.
34 Italy 788. 481. 129.
35 Jamaica 699. 396. 103.
36 Jordan 658. 375. 134.
37 Japan 849. 546. 229.
38 Kazakhstan 790. 441. 86.6
39 Cambodia 532. 340. 141.
40 Korea 865. 531. 0
41 Kosovo 607. 354. 168.
42 Lithuania 807. 480. 179.
43 Latvia 801. 493. 198.
44 Macao (China) 799. 543. 224.
45 Morocco 624. 363. 136.
46 Republic of Moldova 712. 417. 155.
47 Mexico 667. 411. 131.
48 North Macedonia 701. 382. 80.9
49 Malta 741. 470. 158.
50 Montenegro 713. 405. 150.
51 Mongolia 678. 411. 133.
52 Malaysia 759. 417. 182.
53 Netherlands 805. 487. 125.
54 Norway 849. 479. 95.8
55 New Zealand 874. 505. 156.
56 Panama 739. 385. 125.
57 Peru 762. 411. 124.
58 Philippines 767. 354. 123.
59 Poland 778. 505. 204.
60 Portugal 766. 488. 174.
61 Paraguay 651. 372. 112.
62 Palestinian Authority 653. 367. 48.4
63 Qatar 803. 429. 138.
64 Baku (Azerbaijan) 663. 382. 89.8
65 Ukrainian regions (18 of 27) 757. 454. 148.
66 Romania 745. 436. 85.8
67 Saudi Arabia 695. 390. 182.
68 Singapore 873. 561. 188.
69 El Salvador 682. 375. 48.0
70 Serbia 755. 447. 158.
71 Slovak Republic 830. 467. 99.0
72 Slovenia 812. 487. 191.
73 Sweden 854. 494. 127.
74 Chinese Taipei 883. 527. 115.
75 Thailand 753. 429. 159.
76 Türkiye 763. 476. 162.
77 Uruguay 709. 433. 124.
78 United States 817. 498. 164.
79 Uzbekistan 630. 355. 143.
80 Viet Nam 752. 473. 178.
Important
group_by() can have unintended consequences in your code if you are saving your pipes to new dataframes. To be safe your can clear any grouping by adding: my_data %>% ungroup()
4.1 Questions
Spot the three errors with the following summarise statement
PISA_2022 %>%group(CNT)summarise(num_stus = n)
answer
PISA_2022 %>%group_by(CNT) %>%#1 group_by NOT group #2 missing pipe %>%summarise(num_stus =n()) #3 = n() not = n
Write a group_by and summarise statement to work out the mean and median cultural capital value ESCS for each student by country CNT
Using summarise work out, Yes or No, by country CNT and gender ST004D01T, whether students “Agree/disagree: There are enough [digital resources] for every student at my school” IC172Q01JA. Filter out any NA values on IC172Q01JA:
Sometimes you will want to adjust the values stored in a field, e.g. converting a distance in miles into kilometres; or compute a new fields based on other fields, e.g. working out a total grade given the parts of a test. To do this we can use mutate. Unlike summarise, mutate retains all the other columns either adding a new column or changing an existing one
mutate(<field> = <field_calculation>)
The PISA_2022 dataset has results for maths PV1MATH, science PV1SCIE and reading PV1READ. We could combine these to create an overall PISA_grade, and PISA_mean:
mutate creates a new field called PV1_total made up by adding together the columns for maths, science and reading. Each column acts like a vector and adding them together is the equivalent of adding each students individual grades together, row by row. See ?@sec-vectors for more details on vector addition.
2
inside the same mutate statement, we take the PV1_total calculated on line two and divide it by 3, to give us a mean value, this is then assigned to a new column, PV1_mean.
3
this line selects only the fields that we are interested in, dropping the others
We can use mutate to create subsets of data in fields. For example, if we wanted to see how many students in each country were high performing readers, specified by getting a reading grade of greater than 550, we could do the following:
this line creates a new column called PV1READ_high for every students, storing a boolean value, TRUE or FALSE depending on whether their reading grates PV1READ > 550.
3
a grouping is made on the country and the new field PV1READ_high, e.g. Albania + TRUE, Albania + FALSE, etc.
4
using summarise we can find the number of student rows in each grouping using n(), and drop all the other fields
# A tibble: 159 × 3
# Groups: CNT [80]
CNT PV1READ_high n
<fct> <lgl> <int>
1 Albania FALSE 6055
2 Albania TRUE 74
3 United Arab Emirates FALSE 20711
4 United Arab Emirates TRUE 3889
5 Argentina FALSE 11197
6 Argentina TRUE 914
7 Australia FALSE 9005
8 Australia TRUE 4432
9 Austria FALSE 4461
10 Austria TRUE 1690
11 Belgium FALSE 6049
12 Belgium TRUE 2237
13 Bulgaria FALSE 5521
14 Bulgaria TRUE 586
15 Brazil FALSE 9772
16 Brazil TRUE 1026
17 Brunei Darussalam FALSE 4931
18 Brunei Darussalam TRUE 645
19 Canada FALSE 16260
20 Canada TRUE 6813
21 Switzerland FALSE 4986
22 Switzerland TRUE 1843
23 Chile FALSE 5244
24 Chile TRUE 1244
25 Colombia FALSE 7142
26 Colombia TRUE 662
27 Costa Rica FALSE 5736
28 Costa Rica TRUE 377
29 Czech Republic FALSE 5661
30 Czech Republic TRUE 2799
31 Germany FALSE 4428
32 Germany TRUE 1688
33 Denmark FALSE 4744
34 Denmark TRUE 1456
35 Dominican Republic FALSE 6766
36 Dominican Republic TRUE 102
37 Spain FALSE 23377
38 Spain TRUE 7423
39 Estonia FALSE 4100
40 Estonia TRUE 2292
41 Finland FALSE 7446
42 Finland TRUE 2793
43 France FALSE 5157
44 France TRUE 1613
45 United Kingdom FALSE 9117
46 United Kingdom TRUE 3855
47 Georgia FALSE 6435
48 Georgia TRUE 148
49 Greece FALSE 5577
50 Greece TRUE 826
51 Guatemala FALSE 5123
52 Guatemala TRUE 67
53 Hong Kong (China) FALSE 3926
54 Hong Kong (China) TRUE 1981
55 Croatia FALSE 4875
56 Croatia TRUE 1260
57 Hungary FALSE 4619
58 Hungary TRUE 1579
59 Indonesia FALSE 13265
60 Indonesia TRUE 174
61 Ireland FALSE 3469
62 Ireland TRUE 2100
63 Iceland FALSE 2875
64 Iceland TRUE 485
65 Israel FALSE 4476
66 Israel TRUE 1775
67 Italy FALSE 8077
68 Italy TRUE 2475
69 Jamaica FALSE 3609
70 Jamaica TRUE 264
71 Jordan FALSE 7760
72 Jordan TRUE 39
73 Japan FALSE 3568
74 Japan TRUE 2192
75 Kazakhstan FALSE 18472
76 Kazakhstan TRUE 1297
77 Cambodia FALSE 5279
78 Korea FALSE 3838
79 Korea TRUE 2616
80 Kosovo FALSE 6020
81 Kosovo TRUE 7
82 Lithuania FALSE 5837
83 Lithuania TRUE 1420
84 Latvia FALSE 4269
85 Latvia TRUE 1104
86 Macao (China) FALSE 2904
87 Macao (China) TRUE 1480
88 Morocco FALSE 6856
89 Morocco TRUE 11
90 Republic of Moldova FALSE 5868
91 Republic of Moldova TRUE 367
92 Mexico FALSE 5935
93 Mexico TRUE 353
94 North Macedonia FALSE 6570
95 North Macedonia TRUE 40
96 Malta FALSE 2545
97 Malta TRUE 582
98 Montenegro FALSE 5447
99 Montenegro TRUE 346
100 Mongolia FALSE 6911
101 Mongolia TRUE 88
102 Malaysia FALSE 6877
103 Malaysia TRUE 192
104 Netherlands FALSE 3791
105 Netherlands TRUE 1255
106 Norway FALSE 4811
107 Norway TRUE 1800
108 New Zealand FALSE 3106
109 New Zealand TRUE 1576
110 Panama FALSE 4337
111 Panama TRUE 207
112 Peru FALSE 6487
113 Peru TRUE 481
114 Philippines FALSE 7106
115 Philippines TRUE 87
116 Poland FALSE 4143
117 Poland TRUE 1868
118 Portugal FALSE 5162
119 Portugal TRUE 1631
120 Paraguay FALSE 4988
121 Paraguay TRUE 96
122 Palestinian Authority FALSE 7881
123 Palestinian Authority TRUE 24
124 Qatar FALSE 6841
125 Qatar TRUE 835
126 Baku (Azerbaijan) FALSE 7598
127 Baku (Azerbaijan) TRUE 122
128 Ukrainian regions (18 of 27) FALSE 3503
129 Ukrainian regions (18 of 27) TRUE 373
130 Romania FALSE 6395
131 Romania TRUE 969
132 Saudi Arabia FALSE 6790
133 Saudi Arabia TRUE 138
134 Singapore FALSE 3221
135 Singapore TRUE 3385
136 El Salvador FALSE 6588
137 El Salvador TRUE 117
138 Serbia FALSE 5640
139 Serbia TRUE 773
140 Slovak Republic FALSE 4759
141 Slovak Republic TRUE 1065
142 Slovenia FALSE 5619
143 Slovenia TRUE 1102
144 Sweden FALSE 4237
145 Sweden TRUE 1835
146 Chinese Taipei FALSE 3785
147 Chinese Taipei TRUE 2072
148 Thailand FALSE 7971
149 Thailand TRUE 524
150 Türkiye FALSE 6180
151 Türkiye TRUE 1070
152 Uruguay FALSE 5839
153 Uruguay TRUE 779
154 United States FALSE 2976
155 United States TRUE 1576
156 Uzbekistan FALSE 7288
157 Uzbekistan TRUE 5
158 Viet Nam FALSE 5348
159 Viet Nam TRUE 720
Comparisons can also be made between different columns, if we wanted to find out the percentage of Males and Females that got a better grade in their maths test PV1MATH than in their reading test PV1READ:
mutate creates a new field called maths_better made up by comparing the PV1MATH grade with PV1READ and creating a boolean/logical vector for the column.
3
selects a subset of the columns
4
filters out any students that don’t have gender data ST004D01Tand where the calculation on line 2 failed, i.e. PV1MATH or PV1READ was NA
5
group on the gender of the student
6
using the group on line 5, use mutate to calculate the total number of Males and Females by looking for the number of rows in each group n(), store this as students_n
7
re-group the data on gender ST004D01T and whether the student is better at maths than reading maths_better
8
count the number of students, n in each group specified by line 7.
9
create a percentage figure for the number of students in each grouping given by line 7. Use the n value from line 8 and the students_n value from line 6. NOTE: we need to use unique(students_n) to return just one value for each grouping rather than a value for every row of the line 7 grouping
# A tibble: 4 × 4
# Groups: ST004D01T [2]
ST004D01T maths_better n per
<fct> <lgl> <int> <dbl>
1 Female FALSE 180350 0.590
2 Female TRUE 125409 0.410
3 Male FALSE 118341 0.384
4 Male TRUE 189565 0.616
For more information on how to mutate fields using ifelse, see Section 8.1
6 arrange
The results returned by pipes can be huge, so it’s a good idea to store them in objects and explore them in the Environment window where you can sort and search within the output. There might also be times when you want to order/arrange the outputs in a particular way. We can do this quite easily in the tidyverse by using the arrange(<column_name>, <column_name>) function.
# A tibble: 613,744 × 3
CNT ST004D01T PV1MATH
<fct> <fct> <dbl>
1 Cambodia Male 0
2 Guatemala Female 57.8
3 Cambodia Female 84.7
4 Cambodia Male 87.9
5 Cambodia Male 88.6
6 Paraguay Male 90.4
7 Cambodia Male 94.4
8 Cambodia Female 98.0
9 Albania Male 99.7
10 Cambodia Female 100.
11 Cambodia Male 104.
12 Cambodia Male 105.
13 Israel Female 105.
14 Cambodia Female 110.
15 Chile Female 110.
16 Albania Female 113.
17 Cambodia Male 113.
18 Cambodia Female 115.
19 Cambodia Male 115.
20 Israel Female 117.
21 Albania Male 117.
22 Greece Male 118.
23 United Arab Emirates Male 119.
24 Sweden Female 119.
25 Cambodia Male 120.
26 Guatemala Female 121.
27 Cambodia Female 121.
28 Serbia Female 122.
29 Cambodia Male 123.
30 Cambodia Male 124.
31 United Arab Emirates Male 124.
32 Cambodia Male 125.
33 Cambodia Female 125.
34 Cambodia Female 126.
35 Paraguay Female 127.
36 United Arab Emirates Male 127.
37 Montenegro Male 128.
38 Paraguay Female 129.
39 United Arab Emirates Male 129.
40 Albania Female 129.
41 Canada Female 129.
42 Cambodia Male 129.
43 Spain Male 129.
44 Cambodia Male 130.
45 Guatemala Female 130.
46 Uruguay Female 131.
47 Cambodia Male 133.
48 Paraguay Female 133.
49 Guatemala Male 133.
50 Romania Male 133.
51 Cambodia Male 133.
52 Albania Female 133.
53 Albania Male 134.
54 Paraguay Female 134.
55 Paraguay Male 134.
56 Israel Male 135.
57 North Macedonia Male 135.
58 Paraguay Female 135.
59 Brazil Male 135.
60 Brunei Darussalam Male 136.
61 Paraguay Female 136.
62 Albania Male 136.
63 Cambodia Male 136.
64 Cambodia Male 136.
65 Paraguay Female 137.
66 Paraguay Male 137.
67 Cambodia Male 138.
68 Cambodia Male 138.
69 Cambodia Female 139.
70 Korea Female 139.
71 Israel Male 139.
72 Kazakhstan Male 140.
73 Cambodia Male 140.
74 Paraguay Female 140.
75 Paraguay Male 140.
76 Paraguay Male 141.
77 Uruguay Female 141.
78 Cambodia Female 141.
79 Baku (Azerbaijan) Male 141.
80 Serbia Female 141.
81 Georgia Male 141.
82 Hungary Female 142.
83 Paraguay Female 142.
84 Jordan Male 142.
85 Cambodia Male 143.
86 Cambodia Male 143.
87 Albania Male 143.
88 Cambodia Male 144.
89 Albania Male 144.
90 Romania Female 144.
91 Cambodia Male 145.
92 Uzbekistan Female 145.
93 Israel Male 145.
94 Cambodia Female 145.
95 Paraguay Male 146.
96 Cambodia Female 146.
97 Cambodia Male 146.
98 Israel Male 147.
99 Paraguay Female 147.
100 Paraguay Female 147.
101 Thailand Female 147.
102 Paraguay Female 148.
103 Guatemala Male 148.
104 Guatemala Female 148.
105 Germany Male 148.
106 Albania Male 148.
107 United Arab Emirates Male 148.
108 Israel Male 148.
109 Cambodia Male 148.
110 Cambodia Male 148.
111 Cambodia Male 149.
112 Romania Male 150.
113 Paraguay Female 150.
114 Germany Male 150.
115 Georgia Male 150.
116 North Macedonia Male 150.
117 Paraguay Female 150.
118 Uzbekistan Male 150.
119 Guatemala Male 151.
120 Paraguay Female 151.
121 Cambodia Male 151.
122 Paraguay Male 151.
123 Slovak Republic Male 151.
124 Cambodia Male 152.
125 France Male 152.
126 Paraguay Male 152.
127 Kazakhstan Female 153.
128 Cambodia Male 153.
129 United Arab Emirates Male 153.
130 Cambodia Female 153.
131 North Macedonia Male 153.
132 North Macedonia Male 153.
133 Slovak Republic Female 154.
134 Malta Male 154.
135 Albania Female 154.
136 Albania Male 154.
137 Uzbekistan Female 154.
138 Paraguay Male 155.
139 Guatemala Female 155.
140 United Kingdom Female 155.
141 Palestinian Authority Male 155.
142 Cambodia Female 155.
143 Cambodia Female 155.
144 Qatar Female 156.
145 Baku (Azerbaijan) Male 156.
146 Cambodia Female 156.
147 Paraguay Male 156.
148 Cambodia Male 156.
149 Cambodia Male 157.
150 North Macedonia Female 157.
151 Qatar Male 157.
152 Qatar Male 157.
153 Uzbekistan Female 157.
154 Albania Male 157.
155 Uzbekistan Male 157.
156 Cambodia Female 158.
157 Baku (Azerbaijan) Female 158.
158 Cambodia Female 158.
159 United Arab Emirates Male 158.
160 Albania Male 158.
161 Cambodia Female 158.
162 Korea Male 158.
163 Republic of Moldova Female 158.
164 Guatemala Male 158.
165 Cambodia Male 158.
166 Paraguay Female 158.
167 Serbia Female 158.
168 Guatemala Female 159.
169 Cambodia Male 159.
170 Paraguay Female 159.
171 Baku (Azerbaijan) Male 159.
172 Uzbekistan Male 159.
173 Albania Male 159.
174 Israel Female 160.
175 Cambodia Female 160.
176 United Kingdom Female 160.
177 Paraguay Male 160.
178 Cambodia Male 160.
179 Cambodia Male 160.
180 Uzbekistan Female 160.
181 Indonesia Female 160.
182 Romania Male 161.
183 Guatemala Female 161.
184 Cambodia Male 161.
185 Cambodia Female 161.
186 Cambodia Female 161.
187 United Arab Emirates Male 162.
188 Paraguay Male 162.
189 Finland Female 162.
190 Montenegro Female 162.
191 Colombia Female 162.
192 Cambodia Female 162.
193 Paraguay Male 162.
194 Georgia Male 162.
195 Guatemala Female 163.
196 North Macedonia Male 163.
197 Paraguay Female 163.
198 Spain Female 163.
199 United Arab Emirates Male 163.
200 Guatemala Male 163.
201 Georgia Male 163.
202 North Macedonia Male 163.
203 Brazil Female 163.
204 Bulgaria Male 163.
205 Cambodia Male 163.
206 Cambodia Female 163.
207 Japan Male 164.
208 Guatemala Female 164.
209 Paraguay Female 164.
210 Paraguay Male 164.
211 Colombia Male 164.
212 Cambodia Male 164.
213 Guatemala Female 164.
214 Israel Male 164.
215 Romania Male 164.
216 Cambodia Male 164.
217 Paraguay Male 164.
218 Albania Male 165.
219 Guatemala Male 165.
220 Cambodia Female 165.
221 Georgia Male 165.
222 United Arab Emirates Male 165.
223 Cambodia Male 165.
224 Guatemala Male 166.
225 Cambodia Male 166.
226 Serbia Female 166.
227 Paraguay Male 166.
228 Baku (Azerbaijan) Male 166.
229 United Arab Emirates Male 166.
230 Cambodia Male 167.
231 Guatemala Male 167.
232 Paraguay Female 167.
233 Albania Male 167.
234 Slovak Republic Female 167.
235 Paraguay Female 167.
236 Albania Male 167.
237 Guatemala Female 167.
238 Guatemala Female 167.
239 Cambodia Female 167.
240 Paraguay Female 168.
241 Cambodia Male 168.
242 Albania Male 168.
243 Paraguay Female 168.
244 Bulgaria Male 168.
245 Guatemala Male 168.
246 Cambodia Male 168.
247 Paraguay Female 168.
248 Albania Male 168.
249 Bulgaria Male 168.
250 Cambodia Female 168.
251 Cambodia Male 168.
252 Paraguay Female 168.
253 Uruguay Male 168.
254 Israel Female 168.
255 Albania Female 168.
256 Guatemala Female 169.
257 United Arab Emirates Male 169.
258 Bulgaria Male 169.
259 Brazil Male 169.
260 Paraguay Female 169.
261 Spain Female 169.
262 Baku (Azerbaijan) Male 169.
263 Paraguay Female 169.
264 Paraguay Female 169.
265 Cambodia Female 169.
266 Paraguay Male 169.
267 Palestinian Authority Female 169.
268 United Arab Emirates Female 169.
269 Paraguay Female 169.
270 Paraguay Male 170.
271 Paraguay Female 170.
272 Cambodia Male 170.
273 Sweden Male 170.
274 Bulgaria Male 170.
275 Uruguay Female 170.
276 Guatemala Female 170.
277 Baku (Azerbaijan) Female 170.
278 Slovak Republic Male 170.
279 Romania Male 170.
280 United Arab Emirates Female 170.
281 Guatemala Male 170.
282 Romania Male 170.
283 Baku (Azerbaijan) Female 170.
284 Slovak Republic Male 170.
285 United Arab Emirates Female 170.
286 Baku (Azerbaijan) Female 170.
287 Palestinian Authority Male 171.
288 Sweden Male 171.
289 Palestinian Authority Female 171.
290 Paraguay Female 171.
291 Paraguay Female 171.
292 Albania Female 171.
293 Albania Female 171.
294 Uzbekistan Male 171.
295 United Arab Emirates Male 171.
296 Argentina Female 171.
297 Philippines Male 171.
298 Serbia Male 171.
299 Cambodia Female 171.
300 Guatemala Female 171.
301 Bulgaria Male 171.
302 Jordan Male 171.
303 Uzbekistan Female 171.
304 Cambodia Male 172.
305 United Arab Emirates Male 172.
306 Paraguay Female 172.
307 Albania Female 172.
308 Palestinian Authority Female 172.
309 Paraguay Female 172.
310 Albania Male 172.
311 Cambodia Female 172.
312 Argentina Male 172.
313 Cambodia Female 172.
314 Cambodia Female 173.
315 Jordan Female 173.
316 Cambodia Male 173.
317 Cambodia Male 173.
318 Mexico Female 173.
319 Israel Male 173.
320 Cambodia Male 173.
321 Sweden Male 173.
322 Guatemala Male 173.
323 Israel Female 173.
324 Philippines Male 173.
325 Paraguay Male 173.
326 Kosovo Male 173.
327 Albania Female 173.
328 Türkiye Male 173.
329 Serbia Male 174.
330 Guatemala Female 174.
331 Uzbekistan Female 174.
332 Albania Male 174.
333 Albania Male 174.
334 Guatemala Male 174.
335 United Arab Emirates Female 174.
336 Cambodia Male 174.
337 Republic of Moldova Female 174.
338 Uzbekistan Female 174.
339 Cambodia Female 174.
340 Cambodia Female 174.
341 Kosovo Female 174.
342 Paraguay Female 174.
343 Paraguay Female 174.
344 Cambodia Male 175.
345 Georgia Male 175.
346 Bulgaria Male 175.
347 Guatemala Female 175.
348 Argentina Female 175.
349 Cambodia Female 175.
350 Guatemala Female 175.
351 Albania Male 175.
352 Canada Male 175.
353 Guatemala Female 175.
354 Cambodia Female 175.
355 Paraguay Male 175.
356 Cambodia Female 175.
357 Guatemala Female 175.
358 Israel Male 175.
359 Albania Male 175.
360 Mexico Female 176.
361 Paraguay Female 176.
362 Cambodia Female 176.
363 Georgia Male 176.
364 Montenegro Male 176.
365 North Macedonia Female 176.
366 Cambodia Female 176.
367 El Salvador Male 176.
368 Palestinian Authority Male 176.
369 Mongolia Female 176.
370 Kosovo Male 176.
371 Paraguay Female 176.
372 Paraguay Female 176.
373 Albania Male 176.
374 Uruguay Female 176.
375 Cambodia Male 176.
376 Palestinian Authority Male 176.
377 Paraguay Female 176.
378 Baku (Azerbaijan) Male 176.
379 Paraguay Female 176.
380 Cambodia Female 176.
381 United Arab Emirates Male 176.
382 Cambodia Male 177.
383 Georgia Male 177.
384 Baku (Azerbaijan) Female 177.
385 El Salvador Male 177.
386 Georgia Male 177.
387 Georgia Male 177.
388 Cambodia Male 177.
389 Cambodia Female 177.
390 Cambodia Male 177.
391 Bulgaria Male 177.
392 Cambodia Male 177.
393 Jordan Female 177.
394 Panama Female 177.
395 Brazil Female 177.
396 Georgia Female 177.
397 Cambodia Male 177.
398 United Arab Emirates Male 177.
399 Palestinian Authority Female 178.
400 Palestinian Authority Male 178.
401 Baku (Azerbaijan) Male 178.
402 Cambodia Female 178.
403 Mexico Male 178.
404 Slovak Republic Female 178.
405 Cambodia Male 178.
406 Albania Male 178.
407 Guatemala Male 178.
408 Paraguay Female 178.
409 Albania Female 178.
410 Peru Male 178.
411 Argentina Male 178.
412 Cambodia Female 178.
413 Germany Female 178.
414 Guatemala Female 178.
415 Cambodia Male 178.
416 Guatemala Female 178.
417 Brazil Female 178.
418 Chile Female 178.
419 Romania Female 178.
420 Slovak Republic Female 179.
421 Albania Male 179.
422 Paraguay Female 179.
423 Jordan Male 179.
424 Guatemala Male 179.
425 Israel Male 179.
426 Peru Female 179.
427 United Arab Emirates Female 179.
428 Brazil Male 179.
429 Thailand Female 179.
430 Uzbekistan Female 179.
431 Palestinian Authority Female 179.
432 North Macedonia Male 179.
433 United Arab Emirates Male 179.
434 Argentina Male 179.
435 Bulgaria Female 179.
436 Slovak Republic Male 179.
437 Cambodia Male 179.
438 Jordan Female 179.
439 Georgia Female 179.
440 Albania Male 179.
441 Philippines Male 180.
442 Albania Female 180.
443 United Arab Emirates Male 180.
444 United Arab Emirates Male 180.
445 Colombia Male 180.
446 Paraguay Female 180.
447 Paraguay Male 180.
448 United Arab Emirates Male 180.
449 Guatemala Female 180.
450 Slovak Republic Female 180.
451 Guatemala Male 180.
452 Albania Female 180.
453 Kosovo Male 180.
454 United Arab Emirates Female 180.
455 Jordan Male 180.
456 United Arab Emirates Female 180.
457 Türkiye Female 180.
458 Paraguay Female 180.
459 Peru Female 180.
460 Morocco Male 180.
461 United Arab Emirates Male 180.
462 Cambodia Male 180.
463 Brazil Female 181.
464 Canada Female 181.
465 Baku (Azerbaijan) Female 181.
466 Georgia Female 181.
467 Baku (Azerbaijan) Female 181.
468 North Macedonia Male 181.
469 Uzbekistan Male 181.
470 Cambodia Female 181.
471 Albania Male 181.
472 Kazakhstan Male 181.
473 Guatemala Female 181.
474 Finland Male 181.
475 Baku (Azerbaijan) Female 181.
476 Paraguay Female 181.
477 Republic of Moldova Male 181.
478 Mongolia Male 181.
479 Baku (Azerbaijan) Male 181.
480 Guatemala Female 181.
481 Cambodia Male 181.
482 Montenegro Male 181.
483 Cambodia Male 181.
484 Jordan Female 181.
485 Cambodia Male 181.
486 Argentina Male 181.
487 Saudi Arabia Male 181.
488 Philippines Male 181.
489 Paraguay Male 182.
490 Cambodia Male 182.
491 Cambodia Male 182.
492 Georgia Female 182.
493 Indonesia Female 182.
494 Israel Female 182.
495 Paraguay Male 182.
496 Albania Male 182.
497 Jordan Male 182.
498 Paraguay Female 182.
499 Paraguay Female 182.
500 Albania Female 182.
# ℹ 613,244 more rows
If we’re interested in the highest achieving students we can add the desc() function to arrange:
# A tibble: 613,744 × 4
CNT LANGN ST004D01T PV1MATH
<fct> <fct> <fct> <dbl>
1 Singapore Invalid Male 943.
2 Chinese Taipei Mandarin Male 917.
3 Singapore Invalid Male 897.
4 Korea Korean Male 893.
5 Korea Korean Female 889.
6 Chinese Taipei Mandarin Male 887.
7 Singapore Invalid Male 883.
8 Hong Kong (China) Cantonese Male 880.
9 Korea Korean Male 868.
10 Singapore Invalid Male 867.
11 Hong Kong (China) Cantonese Male 867.
12 Korea Korean Male 867.
13 Chinese Taipei Mandarin Male 861.
14 Hong Kong (China) Cantonese Male 861.
15 Macao (China) Cantonese Male 858.
16 Chinese Taipei Mandarin Male 858.
17 Singapore Invalid Male 856.
18 Chinese Taipei Mandarin Male 855.
19 Korea Korean Female 854.
20 United Kingdom English Female 853.
21 Canada Another language (CAN) Male 851.
22 United Kingdom English Male 850.
23 Korea Korean Male 850.
24 Hong Kong (China) Cantonese Female 849.
25 Chinese Taipei Mandarin Male 847.
26 United Kingdom Another language (QUK) Female 843.
27 Canada French Male 842.
28 Singapore Invalid Male 842.
29 Singapore Invalid Male 842.
30 Chinese Taipei Mandarin Male 841.
31 Chinese Taipei Mandarin Male 841.
32 Singapore Invalid Male 841.
33 Chinese Taipei Mandarin Male 840.
34 Hong Kong (China) Cantonese Male 839.
35 United Kingdom Another language (QUK) Female 838.
36 Chinese Taipei Mandarin Male 838.
37 Hong Kong (China) Mandarin Female 837.
38 Singapore Invalid Male 836.
39 Canada Another language (CAN) Female 834.
40 Singapore Invalid Female 833.
41 Chinese Taipei Mandarin Male 833.
42 Singapore Invalid Male 833.
43 United Arab Emirates English Male 832.
44 Belgium Dutch Male 832.
45 Korea Korean Male 830.
46 United Arab Emirates English Male 830.
47 Hong Kong (China) Cantonese Female 829.
48 Singapore Invalid Female 829.
49 Singapore Invalid Female 829.
50 Canada English Male 829.
51 Chinese Taipei Mandarin Male 828.
52 Singapore Invalid Male 828.
53 Hong Kong (China) Cantonese Male 827.
54 Singapore Invalid Male 827.
55 New Zealand Chinese Male 825.
56 United Kingdom English Male 825.
57 Singapore Invalid Male 825.
58 Korea Korean Male 824.
59 Switzerland Another language (CHE) Male 824.
60 Hong Kong (China) Cantonese Male 824.
61 Hong Kong (China) Cantonese Male 824.
62 United Arab Emirates English Male 823.
63 Singapore Invalid Male 823.
64 Singapore Invalid Male 822.
65 Chinese Taipei Mandarin Female 822.
66 Australia English Male 821.
67 Korea Korean Male 821.
68 Singapore Invalid Female 821.
69 Chinese Taipei Mandarin Male 820.
70 Singapore Invalid Male 820.
71 Hong Kong (China) Cantonese Male 820.
72 Singapore Invalid Male 820.
73 Korea Korean Male 820.
74 United States English Male 820.
75 Macao (China) Cantonese Male 819.
76 Chinese Taipei Mandarin Male 819.
77 Singapore Invalid Male 819.
78 Chinese Taipei Mandarin Male 818.
79 Hong Kong (China) Cantonese Male 818.
80 Singapore Invalid Female 817.
81 Singapore Invalid Male 817.
82 Singapore Invalid Female 816.
83 United Kingdom English Male 816.
84 Hong Kong (China) Mandarin Female 815.
85 Korea Korean Female 815.
86 Korea Korean Male 815.
87 Singapore Invalid Male 814.
88 Korea Korean Male 814.
89 Australia Cantonese Male 814.
90 Singapore Invalid Male 813.
91 Chinese Taipei Mandarin Male 812.
92 Singapore Invalid Female 812.
93 Korea Korean Female 812.
94 United Arab Emirates English Male 812.
95 Singapore Invalid Female 812.
96 Switzerland Swiss German Female 811.
97 Chinese Taipei Mandarin Male 811.
98 Singapore Invalid Male 811.
99 Singapore Invalid Female 811.
100 Macao (China) Cantonese Male 811.
101 Hong Kong (China) Cantonese Female 811.
102 Singapore Invalid Male 811.
103 United Arab Emirates Another language (ARE) Male 811.
104 Singapore Invalid Female 810.
105 Singapore Invalid Male 810.
106 Hong Kong (China) Cantonese Male 809.
107 Singapore Invalid Male 809.
108 Korea Korean Male 809.
109 Chinese Taipei Mandarin Male 808.
110 Australia English Male 808.
111 Japan Japanese Female 808.
112 Belgium Dutch Female 808.
113 Chinese Taipei Mandarin Female 807.
114 Japan Japanese Female 807.
115 Singapore Invalid Female 807.
116 Canada English Male 807.
117 Australia English Male 807.
118 Singapore Invalid Male 806.
119 Hong Kong (China) Mandarin Male 806.
120 Belgium Dutch Female 806.
121 Hong Kong (China) Cantonese Female 806.
122 Korea Korean Female 805.
123 Netherlands Dutch Male 805.
124 Hong Kong (China) Cantonese Male 805.
125 Chinese Taipei Mandarin Male 805.
126 Korea Korean Male 805.
127 United Arab Emirates English Female 805.
128 Singapore Invalid Male 805.
129 Singapore Invalid Male 805.
130 Israel Hebrew Male 805.
131 Korea Korean Male 804.
132 United Kingdom English Male 803.
133 Chinese Taipei Mandarin Male 803.
134 Hong Kong (China) Cantonese Male 803.
135 Chinese Taipei Mandarin Male 803.
136 Singapore Invalid Male 803.
137 Estonia Estonian Male 802.
138 Croatia Croatian Male 802.
139 Lithuania Lithuanian Male 802.
140 Chinese Taipei Mandarin Male 802.
141 Norway Norwegian Male 802.
142 Chinese Taipei Mandarin Male 802.
143 Singapore Invalid Male 802.
144 Korea Korean Female 801.
145 Singapore Invalid Female 801.
146 Macao (China) Mandarin Male 801.
147 Switzerland French Male 801.
148 Korea Korean Male 801.
149 Singapore Invalid Male 801.
150 Chinese Taipei Mandarin Male 800.
151 Singapore Invalid Male 800.
152 Chinese Taipei Mandarin Female 800.
153 Chinese Taipei Mandarin Male 800.
154 Korea Korean Male 799.
155 New Zealand English Male 799.
156 Korea Korean Male 799.
157 Poland Polish Male 799.
158 Australia Another language (AUS) Male 799.
159 Korea Korean Female 799.
160 Germany German Male 799.
161 Chinese Taipei Mandarin Male 799.
162 Chinese Taipei Mandarin Male 799.
163 Chinese Taipei Mandarin Female 798.
164 Macao (China) Cantonese Male 798.
165 Chinese Taipei Mandarin Female 798.
166 Singapore Invalid Female 798.
167 Singapore Invalid Female 798.
168 Singapore Invalid Female 798.
169 Korea Korean Male 798.
170 Singapore Invalid Male 798.
171 Chinese Taipei Mandarin Female 798.
172 United Arab Emirates English Male 798.
173 Korea Korean Female 797.
174 Singapore Invalid Male 797.
175 Hong Kong (China) Cantonese Male 797.
176 Netherlands Dutch Male 797.
177 Australia English Female 797.
178 Singapore Invalid Female 797.
179 Slovenia Slovenian Male 796.
180 Korea Korean Male 796.
181 Hong Kong (China) Cantonese Male 796.
182 Korea Korean Male 796.
183 Czech Republic Czech Male 796.
184 Singapore Invalid Male 796.
185 Singapore Invalid Male 796.
186 Korea Korean Male 795.
187 Macao (China) Cantonese Male 795.
188 Canada English Male 795.
189 Japan Japanese Female 795.
190 Korea Korean Male 795.
191 Australia Another language (AUS) Female 795.
192 Korea Korean Female 795.
193 Singapore Invalid Male 795.
194 Chinese Taipei Mandarin Male 794.
195 Macao (China) Cantonese Female 794.
196 Korea Korean Male 794.
197 Singapore Invalid Male 794.
198 Germany German Male 794.
199 Singapore Invalid Male 794.
200 Chinese Taipei Mandarin Male 794.
201 Belgium Dutch Male 794.
202 Macao (China) Cantonese Male 793.
203 Singapore Invalid Female 793.
204 Singapore Invalid Male 793.
205 Korea Korean Male 793.
206 Singapore Invalid Male 793.
207 United Arab Emirates Another language (ARE) Male 793.
208 Singapore Invalid Female 793.
209 Macao (China) Cantonese Male 792.
210 Israel Hebrew Male 792.
211 Hong Kong (China) Cantonese Female 792.
212 Singapore Invalid Female 792.
213 Singapore Invalid Male 792.
214 Singapore Invalid Male 792.
215 Israel Hebrew Male 791.
216 Macao (China) Cantonese Male 791.
217 Hong Kong (China) Cantonese Male 791.
218 Singapore Invalid Female 791.
219 Hong Kong (China) Cantonese Female 791.
220 New Zealand Chinese Male 791.
221 Hong Kong (China) Cantonese Female 791.
222 United Kingdom English Male 791.
223 Singapore Invalid Female 791.
224 Denmark Danish Male 791.
225 Thailand Thai Male 791.
226 Hong Kong (China) Cantonese Male 791.
227 Singapore Invalid Female 791.
228 Hong Kong (China) Cantonese Female 791.
229 Japan Japanese Male 790.
230 Singapore Invalid Male 790.
231 Hong Kong (China) Cantonese Male 790.
232 United Arab Emirates Arabic Male 790.
233 Hong Kong (China) Missing Male 790.
234 Canada English Male 790.
235 Singapore Invalid Female 789.
236 Korea Korean Male 789.
237 Bulgaria Bulgarian Male 789.
238 Singapore Invalid Male 789.
239 Hong Kong (China) Cantonese Female 789.
240 Singapore Invalid Female 789.
241 Korea Korean Female 788.
242 Canada Another language (CAN) Male 788.
243 Belgium Flemish dialect (BEL) Male 788.
244 Czech Republic Czech Female 788.
245 Hong Kong (China) Cantonese Male 788.
246 Korea Korean Male 788.
247 Singapore Invalid Female 788.
248 Singapore Invalid Male 788.
249 Singapore Invalid Female 788.
250 Japan Japanese Female 788.
251 Singapore Invalid Male 788.
252 Sweden Swedish Male 788.
253 Macao (China) Chinese dialects or languages (MAC) Female 788.
254 Korea Korean Female 788.
255 Canada English Male 787.
256 Hong Kong (China) Cantonese Male 787.
257 Korea Korean Male 787.
258 Singapore Invalid Male 787.
259 Spain Spanish Male 787.
260 Switzerland Swiss German Male 787.
261 Chinese Taipei Mandarin Male 787.
262 Korea Korean Male 787.
263 Chinese Taipei Mandarin Male 786.
264 Singapore Invalid Male 786.
265 Singapore Invalid Male 786.
266 Singapore Invalid Male 786.
267 Macao (China) Mandarin Male 786.
268 Canada English Male 786.
269 Singapore Invalid Female 786.
270 Hungary Hungarian Male 786.
271 Switzerland French Female 785.
272 Chinese Taipei Mandarin Male 785.
273 Singapore Invalid Male 785.
274 Chinese Taipei Mandarin Female 785.
275 Chinese Taipei Mandarin Male 785.
276 Austria German Female 785.
277 Singapore Invalid Male 785.
278 Singapore Invalid Male 785.
279 Singapore Invalid Female 785.
280 Macao (China) Mandarin Male 785.
281 United Kingdom English Male 785.
282 Chinese Taipei Mandarin Male 785.
283 Canada English Male 785.
284 Singapore Invalid Male 785.
285 Hong Kong (China) Cantonese Female 784.
286 Serbia Serbian Male 784.
287 Singapore Invalid Female 784.
288 Korea Korean Male 784.
289 Viet Nam Vietnamese Female 784.
290 Singapore Invalid Female 784.
291 Singapore Invalid Male 784.
292 Estonia Estonian Male 784.
293 Hong Kong (China) Cantonese Female 784.
294 Korea Korean Male 784.
295 Singapore Invalid Male 784.
296 Chinese Taipei Mandarin Female 783.
297 Chinese Taipei Mandarin Female 783.
298 Chinese Taipei Mandarin Male 783.
299 Lithuania Lithuanian Male 783.
300 Estonia Estonian Male 783.
301 Netherlands Dutch Male 783.
302 Singapore Invalid Male 782.
303 Korea Korean Male 782.
304 Macao (China) Mandarin Male 782.
305 Australia Mandarin Male 782.
306 Macao (China) Cantonese Male 782.
307 Singapore Invalid Male 782.
308 Singapore Invalid Male 782.
309 Singapore Invalid Male 782.
310 Austria German Male 782.
311 Chinese Taipei Mandarin Male 781.
312 Korea Korean Female 781.
313 Macao (China) Cantonese Male 781.
314 Switzerland Italian Male 781.
315 Singapore Invalid Male 781.
316 Belgium Dutch Male 781.
317 Canada Another language (CAN) Male 781.
318 Macao (China) Cantonese Male 781.
319 Singapore Invalid Male 781.
320 Hong Kong (China) Cantonese Male 781.
321 Singapore Invalid Female 781.
322 United Kingdom Another language (QUK) Female 781.
323 Singapore Invalid Female 781.
324 Korea Korean Female 781.
325 Macao (China) Mandarin Male 781.
326 Sweden Swedish Female 781.
327 Singapore Invalid Female 781.
328 Czech Republic Czech Male 781.
329 Czech Republic Czech Female 781.
330 Australia English Male 781.
331 Denmark Danish Male 781.
332 Hong Kong (China) Cantonese Male 781.
333 Australia English Female 781.
334 United Arab Emirates English Male 781.
335 Singapore Invalid Male 780.
336 Korea Korean Male 780.
337 Canada English Male 780.
338 Korea Korean Male 780.
339 Chinese Taipei Mandarin Female 780.
340 New Zealand Another language (NZL) Male 780.
341 Macao (China) Cantonese Male 780.
342 Chinese Taipei Mandarin Male 780.
343 United Kingdom English Male 780.
344 Canada Another language (CAN) Male 780.
345 Chinese Taipei Mandarin Male 780.
346 Hong Kong (China) Cantonese Male 779.
347 Japan Japanese Male 779.
348 Korea Korean Male 779.
349 Macao (China) Cantonese Male 779.
350 Singapore Invalid Male 779.
351 Estonia Estonian Male 779.
352 Spain Spanish Male 779.
353 Australia English Female 779.
354 Singapore Invalid Male 779.
355 Hong Kong (China) Cantonese Female 779.
356 Chinese Taipei Mandarin Male 779.
357 Belgium Dutch Male 779.
358 Thailand Thai Male 778.
359 Korea Korean Male 778.
360 Chinese Taipei Mandarin Female 778.
361 Thailand Thai Male 778.
362 Chinese Taipei Mandarin Male 778.
363 Hong Kong (China) Cantonese Male 778.
364 Australia English Male 778.
365 Singapore Invalid Male 778.
366 Korea Korean Female 778.
367 Netherlands Dutch Male 778.
368 Korea Korean Female 777.
369 Macao (China) Cantonese Female 777.
370 Hong Kong (China) Cantonese Male 777.
371 Australia English Female 777.
372 Macao (China) Cantonese Male 777.
373 Singapore Invalid Female 777.
374 Singapore Invalid Male 777.
375 Hong Kong (China) Cantonese Male 777.
376 Hong Kong (China) Cantonese Male 777.
377 Hong Kong (China) Cantonese Male 777.
378 Macao (China) Cantonese Female 777.
379 Poland Polish Male 777.
380 Chinese Taipei Mandarin Male 777.
381 Singapore Invalid Male 777.
382 Australia English Female 776.
383 Switzerland German Male 776.
384 Singapore Invalid Male 776.
385 Thailand Thai Female 776.
386 Canada Another language (CAN) Female 776.
387 Macao (China) Cantonese Male 776.
388 Czech Republic Czech Male 776.
389 Singapore Invalid Male 776.
390 Macao (China) Mandarin Female 776.
391 Macao (China) Cantonese Male 776.
392 Belgium Dutch Male 776.
393 New Zealand English Male 775.
394 Hong Kong (China) Cantonese Male 775.
395 Japan Japanese Male 775.
396 United States English Male 775.
397 Singapore Invalid Male 775.
398 Singapore Invalid Male 775.
399 Singapore Invalid Female 775.
400 Switzerland Swiss German Male 775.
401 Hong Kong (China) Cantonese Male 775.
402 United Kingdom Another language (QUK) Female 774.
403 Korea Korean Female 774.
404 Korea Korean Female 774.
405 Chinese Taipei Mandarin Female 774.
406 Switzerland Swiss German Male 774.
407 Chinese Taipei Mandarin Female 774.
408 Canada English Male 774.
409 Denmark Danish Male 774.
410 Hong Kong (China) Cantonese Male 774.
411 Singapore Invalid Male 774.
412 Macao (China) Chinese dialects or languages (MAC) Female 774.
413 Hong Kong (China) Cantonese Male 774.
414 Korea Korean Male 773.
415 Macao (China) Cantonese Female 773.
416 Switzerland Swiss German Male 773.
417 Singapore Invalid Male 773.
418 Lithuania Lithuanian Female 773.
419 Korea Korean Male 773.
420 Chinese Taipei Mandarin Male 773.
421 Serbia Serbian Male 773.
422 United States English Male 773.
423 Hong Kong (China) Cantonese Male 773.
424 Hong Kong (China) Cantonese Male 773.
425 Spain Spanish Male 773.
426 New Zealand English Female 773.
427 Korea Korean Female 772.
428 Slovak Republic Slovak Male 772.
429 Chinese Taipei Mandarin Male 772.
430 Switzerland French Male 772.
431 Australia English Male 772.
432 Chinese Taipei Mandarin Male 772.
433 Japan Japanese Female 772.
434 Hong Kong (China) Cantonese Female 772.
435 Chinese Taipei Mandarin Female 772.
436 Chinese Taipei Mandarin Male 772.
437 United Arab Emirates English Male 772.
438 Singapore Invalid Female 772.
439 Singapore Invalid Male 772.
440 Korea Korean Male 772.
441 Israel Hebrew Male 772.
442 Singapore Invalid Male 772.
443 Chinese Taipei Mandarin Male 771.
444 Chinese Taipei Mandarin Male 771.
445 United Kingdom English Female 771.
446 Singapore Invalid Male 771.
447 Korea Korean Male 771.
448 Australia Another language (AUS) Female 771.
449 Canada Another language (CAN) Female 771.
450 Hong Kong (China) Cantonese Female 771.
451 Czech Republic Czech Male 771.
452 Israel Hebrew Male 771.
453 Hong Kong (China) Cantonese Male 771.
454 Korea Korean Male 771.
455 Singapore Invalid Female 771.
456 Hong Kong (China) Cantonese Female 771.
457 Canada French Male 771.
458 Japan Japanese Male 770.
459 Chinese Taipei Mandarin Male 770.
460 Hong Kong (China) Cantonese Male 770.
461 Poland Polish Male 770.
462 Korea Korean Female 770.
463 Thailand Thai Female 770.
464 Czech Republic Czech Male 770.
465 Chinese Taipei Mandarin Male 770.
466 New Zealand Korean Male 770.
467 Singapore Invalid Male 770.
468 Australia Mandarin Male 770.
469 Singapore Invalid Female 770.
470 Chinese Taipei Mandarin Female 770.
471 Belgium Dutch Male 770.
472 Hong Kong (China) Cantonese Female 770.
473 Canada English Male 770.
474 Türkiye Turkish Male 770.
475 United Kingdom Another language (QUK) Female 770.
476 Japan Japanese Male 770.
477 Chinese Taipei Mandarin Male 770.
478 Switzerland Italian Female 769.
479 United Kingdom English Male 769.
480 Korea Korean Male 769.
481 Singapore Invalid Male 769.
482 Macao (China) Chinese dialects or languages (MAC) Male 769.
483 Singapore Invalid Female 769.
484 Chinese Taipei Mandarin Female 769.
485 Estonia Estonian Female 769.
486 United States Another language (USA) Male 769.
487 Korea Korean Female 769.
488 Lithuania Lithuanian Female 769.
489 Japan Japanese Male 769.
490 Estonia Estonian Male 769.
491 Hong Kong (China) Chinese dialects or languages (HKG) Male 769.
492 Australia English Male 769.
493 Chinese Taipei Mandarin Male 768.
494 Singapore Invalid Male 768.
495 Estonia Estonian Male 768.
496 Korea Korean Male 768.
497 Singapore Invalid Female 768.
498 Israel Hebrew Male 768.
499 Korea Korean Male 768.
500 Singapore Invalid Male 768.
# ℹ 613,244 more rows
7 Bring everyting together
We know that the evidence strongly indicates that repeating a year is not good for student progress, but how do countries around the world differ in terms of the percentage of their students who repeat a year?
uses the PISA_2022 dataframe, note that this line includes <- to store the result opf the piping into a new object called data_repeat
2
filter out any NA values in the REPEAT field
3
group on the country of student CNT
4
create a new column total for total number of rows n() in each country CNT grouping
5
select on the CNT, REPEAT and total columns
6
regroup the data on country CNT and whether a student has repeated a year REPEAT, i.e. Albania+Did not repeat a grade; Albania+Repeated a grade; etc.
7
using the above grouping, count the number of rows in each group n() and assign this to student_n
8
for each grouping keep the total number of students in each country, as calculated on line 4. Note: unique(total) is needed here to return a single value of total, rather than a value for each student in each country
9
using student_n from line 7 and the number of students per country total, from line 4, create a percentage per for each grouping
10
as we have percentages for both Repeated at lease once and Never repeated, we only need to display one of these.
11
finally, we sort the data on the per/percentage column, to show the countries with the highest level of repeating a grade. This data is self-recorded by students, so might not be totally reliable!
12
save the data to your own folder as a csv
# A tibble: 78 × 5
# Groups: CNT [78]
CNT REPEAT student_n total per
<fct> <fct> <int> <int> <dbl>
1 Morocco Repeated at lease once 3156 6796 0.464
2 Colombia Repeated at lease once 2783 7401 0.376
3 Cambodia Repeated at lease once 1697 5156 0.329
4 Guatemala Repeated at lease once 1382 5110 0.270
5 Panama Repeated at lease once 1050 4080 0.257
6 Philippines Repeated at lease once 1793 7071 0.254
7 Dominican Republic Repeated at lease once 1603 6566 0.244
8 Belgium Repeated at lease once 1941 8055 0.241
9 Jamaica Repeated at lease once 851 3600 0.236
10 Netherlands Repeated at lease once 1118 4858 0.230
11 Uruguay Repeated at lease once 1469 6463 0.227
12 Macao (China) Repeated at lease once 953 4380 0.218
13 Brazil Repeated at lease once 2135 10121 0.211
14 Costa Rica Repeated at lease once 1146 5965 0.192
15 Spain Repeated at lease once 5642 29775 0.189
16 Germany Repeated at lease once 1021 5437 0.188
17 El Salvador Repeated at lease once 1193 6461 0.185
18 Qatar Repeated at lease once 1213 6940 0.175
19 Paraguay Repeated at lease once 783 4943 0.158
20 Portugal Repeated at lease once 1037 6672 0.155
21 Austria Repeated at lease once 827 6047 0.137
22 Chile Repeated at lease once 813 6174 0.132
23 Switzerland Repeated at lease once 876 6705 0.131
24 Peru Repeated at lease once 859 6883 0.125
25 Jordan Repeated at lease once 910 7385 0.123
26 France Repeated at lease once 806 6635 0.121
27 Palestinian Authority Repeated at lease once 889 7504 0.118
28 Hong Kong (China) Repeated at lease once 636 5616 0.113
29 Argentina Repeated at lease once 1303 11546 0.113
30 Mexico Repeated at lease once 692 6253 0.111
31 United Arab Emirates Repeated at lease once 2514 22794 0.110
32 Indonesia Repeated at lease once 1354 13247 0.102
33 Italy Repeated at lease once 1003 10458 0.0959
34 Israel Repeated at lease once 518 5956 0.0870
35 Brunei Darussalam Repeated at lease once 464 5541 0.0837
36 Malaysia Repeated at lease once 563 6967 0.0808
37 United States Repeated at lease once 347 4296 0.0808
38 Thailand Repeated at lease once 574 8404 0.0683
39 Slovak Republic Repeated at lease once 376 5718 0.0658
40 Saudi Arabia Repeated at lease once 415 6682 0.0621
41 Uzbekistan Repeated at lease once 437 7170 0.0609
42 Albania Repeated at lease once 278 5244 0.0530
43 Kosovo Repeated at lease once 302 5741 0.0526
44 Australia Repeated at lease once 674 12990 0.0519
45 Canada Repeated at lease once 1063 21074 0.0504
46 New Zealand Repeated at lease once 223 4516 0.0494
47 Bulgaria Repeated at lease once 275 5782 0.0476
48 Denmark Repeated at lease once 274 5918 0.0463
49 Hungary Repeated at lease once 279 6039 0.0462
50 Viet Nam Repeated at lease once 264 6025 0.0438
51 Malta Repeated at lease once 129 2956 0.0436
52 Sweden Repeated at lease once 239 5876 0.0407
53 Finland Repeated at lease once 398 9911 0.0402
54 Ireland Repeated at lease once 212 5516 0.0384
55 Baku (Azerbaijan) Repeated at lease once 268 7003 0.0383
56 Mongolia Repeated at lease once 261 6930 0.0377
57 Romania Repeated at lease once 266 7292 0.0365
58 Czech Republic Repeated at lease once 295 8362 0.0353
59 Korea Repeated at lease once 217 6385 0.0340
60 Estonia Repeated at lease once 213 6297 0.0338
61 Slovenia Repeated at lease once 218 6577 0.0331
62 Singapore Repeated at lease once 216 6558 0.0329
63 Georgia Repeated at lease once 189 6117 0.0309
64 North Macedonia Repeated at lease once 190 6341 0.0300
65 Republic of Moldova Repeated at lease once 168 6143 0.0273
66 Latvia Repeated at lease once 137 5221 0.0262
67 Ukrainian regions (18 of 27) Repeated at lease once 95 3628 0.0262
68 United Kingdom Repeated at lease once 252 11303 0.0223
69 Poland Repeated at lease once 128 5902 0.0217
70 Montenegro Repeated at lease once 121 5636 0.0215
71 Greece Repeated at lease once 126 6290 0.0200
72 Kazakhstan Repeated at lease once 393 19688 0.0200
73 Lithuania Repeated at lease once 134 7134 0.0188
74 Türkiye Repeated at lease once 127 7220 0.0176
75 Iceland Repeated at lease once 44 3258 0.0135
76 Croatia Repeated at lease once 70 6059 0.0116
77 Serbia Repeated at lease once 69 6324 0.0109
78 Chinese Taipei Repeated at lease once 55 5792 0.00950
8 Advanced topics
8.1 Recoding data (ifelse)
Often we want to plot values in groupings that don’t yet exist, for example might want to give all schools over a certain size a different colour from others schools, or flag up students who have a different home language to the language that is being taught in school. To do this we need to look at how we can recode values. A common way to recode values is through an ifelse statement:
ifelse allows us to recode the data. In the example below, we are going to add a new column to the PISA_2022 dataset (using mutate) noting whether a student got a higher grade in their Maths PV1MATH or Reading PV1READ tests. ifPV1MATH is bigger then PV1READ, the maths_better is TRUE, elsemaths_better is FALSE, or in dplyr format:
We now take this new dataset maths_data and look at whether the difference between relative performance in maths and reading is the same for girls and boys:
# A tibble: 4 × 3
# Groups: ST004D01T [2]
ST004D01T maths_better n
<fct> <lgl> <int>
1 Female FALSE 180350
2 Female TRUE 125409
3 Male FALSE 118341
4 Male TRUE 189565
Adjust the code above to work out the percentages of Males and Females ST004D01T in each group. Check to see if the pattern also exists between science PV1SCIE and reading PV1READ:
ifelse statements can get a little complicated when using factors (see: Section 8.2). Take this example. Let’s flag students who have a different home language LANGN to the language that is being used in the PISA assessment tool LANGTEST_QQQ. We make an assumption here that the assessment tool will be the language used at school, so these students will be learning in a different language to their mother tongue. ifLANGN equals LANGTEST_QQQ, the lang_diff is FALSE, elselang_diff is TRUE, this raises an error:
Error in `mutate()`:
ℹ In argument: `lang_diff = ifelse(LANGN == LANGTEST_QQQ, FALSE, TRUE)`.
Caused by error in `Ops.factor()`:
! level sets of factors are different
The levels in each field are different, i.e. the range of home languages is larger than the range of test languages. To fix this, all we need to do is change the datatype of the factors LANGN and LANGTEST_QQQ to characters using as.character(<field>). This will then allow the comparison of the text stored in each row:
We can now look at this dataset to get an idea of which countries have the largest percentage of students learning in a language other than their mother tongue:
# A tibble: 80 × 4
# Groups: CNT [80]
CNT lang_diff n percentage
<fct> <lgl> <int> <dbl>
1 Albania TRUE 720 11.7
2 United Arab Emirates TRUE 13933 56.6
3 Argentina TRUE 788 6.51
4 Australia TRUE 1827 13.6
5 Austria TRUE 1455 23.7
6 Belgium TRUE 2445 29.5
7 Bulgaria TRUE 961 15.7
8 Brazil TRUE 559 5.18
9 Brunei Darussalam TRUE 4831 86.6
10 Canada TRUE 5971 25.9
11 Switzerland TRUE 4664 68.3
12 Chile TRUE 170 2.62
13 Colombia TRUE 203 2.60
14 Costa Rica TRUE 165 2.70
15 Czech Republic TRUE 514 6.08
16 Germany TRUE 1095 17.9
17 Denmark TRUE 959 15.5
18 Dominican Republic TRUE 449 6.54
19 Spain TRUE 4782 15.5
20 Estonia TRUE 386 6.04
21 Finland TRUE 2086 20.4
22 France TRUE 1073 15.8
23 United Kingdom TRUE 1966 15.2
24 Georgia TRUE 731 11.1
25 Greece TRUE 501 7.82
26 Guatemala TRUE 543 10.5
27 Hong Kong (China) TRUE 5626 95.2
28 Croatia TRUE 200 3.26
29 Hungary TRUE 152 2.45
30 Indonesia TRUE 7131 53.1
31 Ireland TRUE 707 12.7
32 Iceland TRUE 341 10.1
33 Israel TRUE 821 13.1
34 Italy TRUE 2665 25.3
35 Jamaica TRUE 365 9.42
36 Jordan TRUE 647 8.30
37 Japan TRUE 66 1.15
38 Kazakhstan TRUE 2550 12.9
39 Cambodia TRUE 252 4.77
40 Korea TRUE 58 0.899
41 Kosovo TRUE 279 4.63
42 Lithuania TRUE 590 8.13
43 Latvia TRUE 535 9.96
44 Macao (China) TRUE 4384 100
45 Morocco TRUE 6024 87.7
46 Republic of Moldova TRUE 589 9.45
47 Mexico TRUE 170 2.70
48 North Macedonia TRUE 543 8.21
49 Malta TRUE 2441 78.1
50 Montenegro TRUE 5596 96.6
51 Mongolia TRUE 338 4.83
52 Malaysia TRUE 2345 33.2
53 Netherlands TRUE 700 13.9
54 Norway TRUE 6611 100
55 New Zealand TRUE 836 17.9
56 Panama TRUE 514 11.3
57 Peru TRUE 441 6.33
58 Philippines TRUE 6693 93.0
59 Poland TRUE 168 2.79
60 Portugal TRUE 371 5.46
61 Paraguay TRUE 2296 45.2
62 Palestinian Authority TRUE 695 8.79
63 Qatar TRUE 3175 41.4
64 Baku (Azerbaijan) TRUE 6840 88.6
65 Ukrainian regions (18 of 27) TRUE 3747 96.7
66 Romania TRUE 266 3.61
67 Saudi Arabia TRUE 627 9.05
68 Singapore TRUE 6567 99.4
69 El Salvador TRUE 187 2.79
70 Serbia TRUE 227 3.54
71 Slovak Republic TRUE 609 10.5
72 Slovenia TRUE 970 14.4
73 Sweden TRUE 1192 19.6
74 Chinese Taipei TRUE 5821 99.4
75 Thailand TRUE 3104 36.5
76 Türkiye TRUE 630 8.69
77 Uruguay TRUE 327 4.94
78 United States TRUE 890 19.6
79 Uzbekistan TRUE 1058 14.5
80 Viet Nam TRUE 400 6.59
This looks like a promising dataset, but there are some strange results:
lang_data_diff %>%filter(percentage >92)
# A tibble: 8 × 4
# Groups: CNT [8]
CNT lang_diff n percentage
<fct> <lgl> <int> <dbl>
1 Hong Kong (China) TRUE 5626 95.2
2 Macao (China) TRUE 4384 100
3 Montenegro TRUE 5596 96.6
4 Norway TRUE 6611 100
5 Philippines TRUE 6693 93.0
6 Ukrainian regions (18 of 27) TRUE 3747 96.7
7 Singapore TRUE 6567 99.4
8 Chinese Taipei TRUE 5821 99.4
Exploring data for Ukraine, we can see that a different spelling has been used in each field, Ukrainian and Ukranain, an incorrect spelling.
lang_data %>%filter(CNT =="Ukrainian regions (18 of 27)")
# A tibble: 3,876 × 4
CNT lang_diff LANGTEST_QQQ LANGN
<fct> <lgl> <fct> <fct>
1 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
2 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
3 Ukrainian regions (18 of 27) TRUE Ukranian Russian
4 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
5 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
6 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
7 Ukrainian regions (18 of 27) TRUE Ukranian Russian
8 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
9 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
10 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
11 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
12 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
13 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
14 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
15 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
16 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
17 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
18 Ukrainian regions (18 of 27) TRUE Ukranian Missing
19 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
20 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
21 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
22 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
23 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
24 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
25 Ukrainian regions (18 of 27) TRUE Ukranian Another language (UKR)
26 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
27 Ukrainian regions (18 of 27) TRUE Ukranian Russian
28 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
29 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
30 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
31 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
32 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
33 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
34 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
35 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
36 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
37 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
38 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
39 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
40 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
41 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
42 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
43 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
44 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
45 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
46 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
47 Ukrainian regions (18 of 27) TRUE Ukranian Missing
48 Ukrainian regions (18 of 27) TRUE Ukranian Russian
49 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
50 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
51 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
52 Ukrainian regions (18 of 27) TRUE Ukranian Russian
53 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
54 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
55 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
56 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
57 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
58 Ukrainian regions (18 of 27) TRUE Ukranian Russian
59 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
60 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
61 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
62 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
63 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
64 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
65 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
66 Ukrainian regions (18 of 27) TRUE Ukranian Russian
67 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
68 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
69 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
70 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
71 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
72 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
73 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
74 Ukrainian regions (18 of 27) TRUE Ukranian Russian
75 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
76 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
77 Ukrainian regions (18 of 27) TRUE Ukranian Russian
78 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
79 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
80 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
81 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
82 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
83 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
84 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
85 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
86 Ukrainian regions (18 of 27) TRUE Ukranian Russian
87 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
88 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
89 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
90 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
91 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
92 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
93 Ukrainian regions (18 of 27) TRUE Ukranian Another language (UKR)
94 Ukrainian regions (18 of 27) TRUE Ukranian Russian
95 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
96 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
97 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
98 Ukrainian regions (18 of 27) NA <NA> Missing
99 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
100 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
101 Ukrainian regions (18 of 27) NA <NA> Missing
102 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
103 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
104 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
105 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
106 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
107 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
108 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
109 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
110 Ukrainian regions (18 of 27) TRUE Ukranian Russian
111 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
112 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
113 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
114 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
115 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
116 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
117 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
118 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
119 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
120 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
121 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
122 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
123 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
124 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
125 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
126 Ukrainian regions (18 of 27) TRUE Ukranian Russian
127 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
128 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
129 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
130 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
131 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
132 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
133 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
134 Ukrainian regions (18 of 27) TRUE Ukranian Russian
135 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
136 Ukrainian regions (18 of 27) TRUE Ukranian Missing
137 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
138 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
139 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
140 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
141 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
142 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
143 Ukrainian regions (18 of 27) TRUE Ukranian Russian
144 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
145 Ukrainian regions (18 of 27) TRUE Ukranian Russian
146 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
147 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
148 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
149 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
150 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
151 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
152 Ukrainian regions (18 of 27) TRUE Ukranian Romani
153 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
154 Ukrainian regions (18 of 27) TRUE Ukranian Russian
155 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
156 Ukrainian regions (18 of 27) TRUE Ukranian Russian
157 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
158 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
159 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
160 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
161 Ukrainian regions (18 of 27) TRUE Ukranian Russian
162 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
163 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
164 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
165 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
166 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
167 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
168 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
169 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
170 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
171 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
172 Ukrainian regions (18 of 27) TRUE Ukranian Another language (UKR)
173 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
174 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
175 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
176 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
177 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
178 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
179 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
180 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
181 Ukrainian regions (18 of 27) TRUE Ukranian Russian
182 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
183 Ukrainian regions (18 of 27) NA <NA> Missing
184 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
185 Ukrainian regions (18 of 27) TRUE Ukranian Russian
186 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
187 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
188 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
189 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
190 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
191 Ukrainian regions (18 of 27) TRUE Ukranian Russian
192 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
193 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
194 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
195 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
196 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
197 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
198 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
199 Ukrainian regions (18 of 27) TRUE Ukranian Russian
200 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
201 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
202 Ukrainian regions (18 of 27) TRUE Ukranian Missing
203 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
204 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
205 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
206 Ukrainian regions (18 of 27) NA <NA> Missing
207 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
208 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
209 Ukrainian regions (18 of 27) TRUE Ukranian Russian
210 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
211 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
212 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
213 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
214 Ukrainian regions (18 of 27) NA <NA> Missing
215 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
216 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
217 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
218 Ukrainian regions (18 of 27) NA <NA> Missing
219 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
220 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
221 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
222 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
223 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
224 Ukrainian regions (18 of 27) TRUE Ukranian Russian
225 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
226 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
227 Ukrainian regions (18 of 27) TRUE Ukranian Russian
228 Ukrainian regions (18 of 27) TRUE Ukranian Russian
229 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
230 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
231 Ukrainian regions (18 of 27) TRUE Ukranian Russian
232 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
233 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
234 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
235 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
236 Ukrainian regions (18 of 27) TRUE Ukranian Russian
237 Ukrainian regions (18 of 27) TRUE Ukranian Russian
238 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
239 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
240 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
241 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
242 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
243 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
244 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
245 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
246 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
247 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
248 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
249 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
250 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
251 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
252 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
253 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
254 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
255 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
256 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
257 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
258 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
259 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
260 Ukrainian regions (18 of 27) NA <NA> Missing
261 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
262 Ukrainian regions (18 of 27) TRUE Ukranian Russian
263 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
264 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
265 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
266 Ukrainian regions (18 of 27) TRUE Ukranian Missing
267 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
268 Ukrainian regions (18 of 27) TRUE Ukranian Missing
269 Ukrainian regions (18 of 27) TRUE Ukranian Russian
270 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
271 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
272 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
273 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
274 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
275 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
276 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
277 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
278 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
279 Ukrainian regions (18 of 27) NA <NA> Missing
280 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
281 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
282 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
283 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
284 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
285 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
286 Ukrainian regions (18 of 27) TRUE Ukranian Russian
287 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
288 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
289 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
290 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
291 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
292 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
293 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
294 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
295 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
296 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
297 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
298 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
299 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
300 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
301 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
302 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
303 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
304 Ukrainian regions (18 of 27) TRUE Ukranian Missing
305 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
306 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
307 Ukrainian regions (18 of 27) TRUE Ukranian Missing
308 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
309 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
310 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
311 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
312 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
313 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
314 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
315 Ukrainian regions (18 of 27) TRUE Ukranian Russian
316 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
317 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
318 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
319 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
320 Ukrainian regions (18 of 27) FALSE Russian Russian
321 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
322 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
323 Ukrainian regions (18 of 27) TRUE Ukranian Crimean Tatar Language …
324 Ukrainian regions (18 of 27) TRUE Ukranian Missing
325 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
326 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
327 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
328 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
329 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
330 Ukrainian regions (18 of 27) TRUE Ukranian Missing
331 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
332 Ukrainian regions (18 of 27) TRUE Ukranian Russian
333 Ukrainian regions (18 of 27) TRUE Ukranian Romani
334 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
335 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
336 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
337 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
338 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
339 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
340 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
341 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
342 Ukrainian regions (18 of 27) TRUE Ukranian Russian
343 Ukrainian regions (18 of 27) TRUE Ukranian Another language (UKR)
344 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
345 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
346 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
347 Ukrainian regions (18 of 27) TRUE Ukranian Russian
348 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
349 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
350 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
351 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
352 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
353 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
354 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
355 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
356 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
357 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
358 Ukrainian regions (18 of 27) TRUE Ukranian Russian
359 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
360 Ukrainian regions (18 of 27) TRUE Ukranian Russian
361 Ukrainian regions (18 of 27) TRUE Ukranian Russian
362 Ukrainian regions (18 of 27) TRUE Ukranian Missing
363 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
364 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
365 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
366 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
367 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
368 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
369 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
370 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
371 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
372 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
373 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
374 Ukrainian regions (18 of 27) TRUE Ukranian Russian
375 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
376 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
377 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
378 Ukrainian regions (18 of 27) TRUE Ukranian Missing
379 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
380 Ukrainian regions (18 of 27) TRUE Ukranian Missing
381 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
382 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
383 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
384 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
385 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
386 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
387 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
388 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
389 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
390 Ukrainian regions (18 of 27) TRUE Ukranian Another language (UKR)
391 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
392 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
393 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
394 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
395 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
396 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
397 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
398 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
399 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
400 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
401 Ukrainian regions (18 of 27) NA <NA> Missing
402 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
403 Ukrainian regions (18 of 27) TRUE Ukranian Russian
404 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
405 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
406 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
407 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
408 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
409 Ukrainian regions (18 of 27) NA <NA> Missing
410 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
411 Ukrainian regions (18 of 27) TRUE Ukranian Russian
412 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
413 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
414 Ukrainian regions (18 of 27) TRUE Ukranian Russian
415 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
416 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
417 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
418 Ukrainian regions (18 of 27) TRUE Ukranian Russian
419 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
420 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
421 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
422 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
423 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
424 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
425 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
426 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
427 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
428 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
429 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
430 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
431 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
432 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
433 Ukrainian regions (18 of 27) TRUE Ukranian Russian
434 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
435 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
436 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
437 Ukrainian regions (18 of 27) TRUE Ukranian Another language (UKR)
438 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
439 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
440 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
441 Ukrainian regions (18 of 27) TRUE Ukranian Russian
442 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
443 Ukrainian regions (18 of 27) TRUE Ukranian Missing
444 Ukrainian regions (18 of 27) TRUE Ukranian Russian
445 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
446 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
447 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
448 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
449 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
450 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
451 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
452 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
453 Ukrainian regions (18 of 27) NA <NA> Missing
454 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
455 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
456 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
457 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
458 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
459 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
460 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
461 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
462 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
463 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
464 Ukrainian regions (18 of 27) NA <NA> Missing
465 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
466 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
467 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
468 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
469 Ukrainian regions (18 of 27) TRUE Ukranian Another language (UKR)
470 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
471 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
472 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
473 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
474 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
475 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
476 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
477 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
478 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
479 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
480 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
481 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
482 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
483 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
484 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
485 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
486 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
487 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
488 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
489 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
490 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
491 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
492 Ukrainian regions (18 of 27) TRUE Ukranian Russian
493 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
494 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
495 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
496 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
497 Ukrainian regions (18 of 27) TRUE Ukranian Another language (UKR)
498 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
499 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
500 Ukrainian regions (18 of 27) TRUE Ukranian Ukrainian
# ℹ 3,376 more rows
ifelse can help here too. If we pick the spelling we want to stick to, we can recode fields to match:
lang_data %>%mutate(LANGTEST_QQQ =ifelse(as.character(LANGTEST_QQQ) =="Ukranian","Ukrainian",as.character(LANGTEST_QQQ))) %>%mutate(lang_diff =ifelse(as.character(LANGN) ==as.character(LANGTEST_QQQ),FALSE, TRUE)) %>%filter(CNT =="Ukrainian regions (18 of 27)")
# A tibble: 3,876 × 4
CNT lang_diff LANGTEST_QQQ LANGN
<fct> <lgl> <chr> <fct>
1 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
2 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
3 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
4 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
5 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
6 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
7 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
8 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
9 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
10 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
11 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
12 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
13 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
14 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
15 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
16 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
17 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
18 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
19 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
20 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
21 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
22 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
23 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
24 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
25 Ukrainian regions (18 of 27) TRUE Ukrainian Another language (UKR)
26 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
27 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
28 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
29 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
30 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
31 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
32 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
33 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
34 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
35 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
36 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
37 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
38 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
39 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
40 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
41 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
42 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
43 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
44 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
45 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
46 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
47 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
48 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
49 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
50 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
51 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
52 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
53 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
54 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
55 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
56 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
57 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
58 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
59 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
60 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
61 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
62 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
63 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
64 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
65 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
66 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
67 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
68 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
69 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
70 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
71 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
72 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
73 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
74 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
75 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
76 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
77 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
78 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
79 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
80 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
81 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
82 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
83 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
84 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
85 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
86 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
87 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
88 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
89 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
90 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
91 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
92 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
93 Ukrainian regions (18 of 27) TRUE Ukrainian Another language (UKR)
94 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
95 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
96 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
97 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
98 Ukrainian regions (18 of 27) NA <NA> Missing
99 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
100 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
101 Ukrainian regions (18 of 27) NA <NA> Missing
102 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
103 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
104 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
105 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
106 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
107 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
108 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
109 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
110 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
111 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
112 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
113 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
114 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
115 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
116 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
117 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
118 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
119 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
120 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
121 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
122 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
123 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
124 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
125 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
126 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
127 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
128 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
129 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
130 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
131 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
132 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
133 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
134 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
135 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
136 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
137 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
138 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
139 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
140 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
141 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
142 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
143 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
144 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
145 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
146 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
147 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
148 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
149 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
150 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
151 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
152 Ukrainian regions (18 of 27) TRUE Ukrainian Romani
153 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
154 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
155 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
156 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
157 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
158 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
159 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
160 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
161 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
162 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
163 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
164 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
165 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
166 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
167 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
168 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
169 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
170 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
171 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
172 Ukrainian regions (18 of 27) TRUE Ukrainian Another language (UKR)
173 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
174 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
175 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
176 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
177 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
178 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
179 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
180 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
181 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
182 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
183 Ukrainian regions (18 of 27) NA <NA> Missing
184 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
185 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
186 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
187 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
188 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
189 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
190 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
191 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
192 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
193 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
194 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
195 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
196 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
197 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
198 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
199 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
200 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
201 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
202 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
203 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
204 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
205 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
206 Ukrainian regions (18 of 27) NA <NA> Missing
207 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
208 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
209 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
210 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
211 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
212 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
213 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
214 Ukrainian regions (18 of 27) NA <NA> Missing
215 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
216 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
217 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
218 Ukrainian regions (18 of 27) NA <NA> Missing
219 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
220 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
221 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
222 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
223 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
224 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
225 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
226 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
227 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
228 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
229 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
230 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
231 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
232 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
233 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
234 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
235 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
236 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
237 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
238 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
239 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
240 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
241 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
242 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
243 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
244 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
245 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
246 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
247 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
248 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
249 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
250 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
251 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
252 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
253 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
254 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
255 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
256 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
257 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
258 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
259 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
260 Ukrainian regions (18 of 27) NA <NA> Missing
261 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
262 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
263 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
264 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
265 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
266 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
267 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
268 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
269 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
270 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
271 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
272 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
273 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
274 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
275 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
276 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
277 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
278 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
279 Ukrainian regions (18 of 27) NA <NA> Missing
280 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
281 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
282 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
283 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
284 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
285 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
286 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
287 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
288 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
289 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
290 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
291 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
292 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
293 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
294 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
295 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
296 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
297 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
298 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
299 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
300 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
301 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
302 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
303 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
304 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
305 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
306 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
307 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
308 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
309 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
310 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
311 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
312 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
313 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
314 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
315 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
316 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
317 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
318 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
319 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
320 Ukrainian regions (18 of 27) FALSE Russian Russian
321 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
322 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
323 Ukrainian regions (18 of 27) TRUE Ukrainian Crimean Tatar Language …
324 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
325 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
326 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
327 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
328 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
329 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
330 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
331 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
332 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
333 Ukrainian regions (18 of 27) TRUE Ukrainian Romani
334 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
335 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
336 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
337 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
338 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
339 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
340 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
341 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
342 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
343 Ukrainian regions (18 of 27) TRUE Ukrainian Another language (UKR)
344 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
345 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
346 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
347 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
348 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
349 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
350 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
351 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
352 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
353 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
354 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
355 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
356 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
357 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
358 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
359 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
360 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
361 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
362 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
363 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
364 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
365 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
366 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
367 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
368 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
369 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
370 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
371 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
372 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
373 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
374 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
375 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
376 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
377 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
378 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
379 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
380 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
381 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
382 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
383 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
384 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
385 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
386 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
387 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
388 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
389 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
390 Ukrainian regions (18 of 27) TRUE Ukrainian Another language (UKR)
391 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
392 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
393 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
394 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
395 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
396 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
397 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
398 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
399 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
400 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
401 Ukrainian regions (18 of 27) NA <NA> Missing
402 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
403 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
404 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
405 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
406 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
407 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
408 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
409 Ukrainian regions (18 of 27) NA <NA> Missing
410 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
411 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
412 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
413 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
414 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
415 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
416 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
417 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
418 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
419 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
420 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
421 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
422 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
423 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
424 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
425 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
426 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
427 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
428 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
429 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
430 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
431 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
432 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
433 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
434 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
435 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
436 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
437 Ukrainian regions (18 of 27) TRUE Ukrainian Another language (UKR)
438 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
439 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
440 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
441 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
442 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
443 Ukrainian regions (18 of 27) TRUE Ukrainian Missing
444 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
445 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
446 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
447 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
448 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
449 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
450 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
451 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
452 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
453 Ukrainian regions (18 of 27) NA <NA> Missing
454 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
455 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
456 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
457 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
458 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
459 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
460 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
461 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
462 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
463 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
464 Ukrainian regions (18 of 27) NA <NA> Missing
465 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
466 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
467 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
468 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
469 Ukrainian regions (18 of 27) TRUE Ukrainian Another language (UKR)
470 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
471 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
472 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
473 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
474 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
475 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
476 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
477 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
478 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
479 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
480 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
481 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
482 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
483 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
484 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
485 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
486 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
487 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
488 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
489 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
490 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
491 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
492 Ukrainian regions (18 of 27) TRUE Ukrainian Russian
493 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
494 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
495 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
496 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
497 Ukrainian regions (18 of 27) TRUE Ukrainian Another language (UKR)
498 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
499 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
500 Ukrainian regions (18 of 27) FALSE Ukrainian Ukrainian
# ℹ 3,376 more rows
Unfortunately, if you explore this dataset a little further, the language fields don’t conform well with each other and a lot more work with ifelse will be needed before you could put together any full analysis around students who speak different languages at home and at school.
Tip
It’s possible to nest our ifelse statements, by writing another ifelse where you would have the <value_if_false>, for example we might want to give describe the type of school in England:
# TODO: use PISA for thisplot_data <- schools %>%mutate(sch_type =ifelse(EstablishmentGroup =="Special schools", "Special",ifelse(EstablishmentGroup =="Independent schools", "Independent",ifelse(AdmissionsPolicy=="Selective", "Grammar", "Comprehensive"))))
8.2 Factors and statistical data types
The types of variable will heavily influence what statistical analysis you can perform, e.g. you’ll need numeric values for a t-test. R is there to help by assigning datatypes to each field. We have different sorts of data that can be stored:
Categorical - data that can be divided into groups or categories
Nominal - categorical data where the order isn’t important, e.g. gender, or colours
Ordinal - categorical data that may have order or ranking, e.g. exam grades (A, B, C, D) or Likert scales (strongly agree, agree, disgaree, strongly disagree)
Numeric - data that consists of numbers
Continuous - numeric data that can take any value within a given range, e.g. height (178cm, 134.54cm)
Discrete - numeric data that can take only certain values within a range, e.g. number of children in a family (0,1,2,3,4,5)
But here we are going to look at how R handles factors. Factors have two parts, levels and codes. levels are what you see when you view a table column, codes are an underlying order to the data. Factors allow you to store data that has a known set of values that you might want to display in an order other than alphabetical. For example, if we look at the month field ST003D02T using the levels(<field>) command:
We can see that the months of the year are there along with other possible levels. With this particular column there are levels for missing or wrong responses (“Valid Skip”, “Not Applicable” “Invalid”, “No Response”), though PISA rarely uses them. You are more likely to find that missing/wrong data items are coded as NA, as you can see below:
PISA_2022 %>%count(ST003D02T)
# A tibble: 13 × 2
ST003D02T n
<fct> <int>
1 January 48760
2 February 43030
3 March 48671
4 April 47014
5 May 49235
6 June 48890
7 July 51262
8 August 51681
9 September 51755
10 October 51703
11 November 48179
12 December 48156
13 <NA> 25408
Codes are the underlying numbers/order for each level, in this case 1 = January, 2 = February, etc. R stores factors as codes, then uses the levels to display the data. You can see the codes by using the as.numeric command on a factor:
How can this be useful? Firstly it’s more efficient for R to store data this way, numbers (codes) are smaller and easier to sort/search than text (levels). But it also helps when we come to presenting data. A good example is how plots are made, they will use the codes to give an order to the display of columns, in the plot below, February (2) comes before August (8), even though there were more students born in August and A is before F in the alphabet:
[1] September October August July May June January
[8] March November December April February <NA>
attr(,"label")
[1] Student (Standardized) Birth - Month
16 Levels: January February March April May June July August ... No Response
# get the levels in order and pull/create a vector of themmy_levels <- grph_data %>%arrange(desc(n)) %>%pull(ST003D02T)# reassign the re-ordered levels to the dataframe columngrph_data$ST003D02T <-factor(grph_data$ST003D02T, levels=my_levels)ggplot(data=grph_data, aes(x=ST003D02T, y=n)) +geom_bar(stat ="identity")
Spot the five errors with the following code. Can you make it work? What does it do?
# Work out when science scores are better than mathsPISA_2022_scimath < PISA_2022 %>%rename(gender = ST004D01T) %>%mutate(sci better = PV1SCIE - PV1MATH) %>%filter(is.na(scibetter) %>%group_by(CNT gender) %>%summarise(students = n,sci_win =sum(scibetter >=0),per_scibetter =100*(sci_win/students))
answer
# Work out when more time spent in language lessons than maths lessonsPISA_2022_scimath <- PISA_2022 %>%#1 make sure you have the assignment arrow <-rename(gender = ST004D01T) %>%mutate(sci_better = PV1MATH - PV1SCIE) %>%#2 _ not space in name of fieldfilter(!is.na(sci_better)) %>%#3 this needs to be !is.na, otherwise it'll return nothinggroup_by(CNT, gender) %>%#4 missing commasummarise(students =n(), #5 missing brackets on the n() commandsci_win =sum(sci_better >=0),per_sci_win =100*(sci_win/students))
By country and gender work out the mean, median and standard deviations of STUBMI, order by the descending mean.
To further check your understanding of this section you will be attempting to analyse the 2022 teacher dataset. This dataset includes records for 68054 teachers from 18 countries, including 544 columns, covering attitudinal, demographic and workplace data. You can find the dataset here in the .parquet format.
example loading code
# download the file then# Work out when more time spent in language lessons than maths lessonsPISA_2022_teacher <-read_parquet("C:/Users/Peter/Downloads/PISA_2012_teacher.parquet")
Work out how many teachers are in the dataset for Portugal
For each country CNTRYID by gender TC001Q01NA, what is the mean time that a teacher has been in the teaching profession TC007Q02NA? Include the number of teachers in each group. Order this to show the country with the longest serving workforce:
For each country CNT find out which teachers report that they ‘Help students think critically’ TC199Q07HA. Hin: you’ll need to look at the levels of this question to find the correct filter:
answer
crit_thinking <- PISA_2022_teacher %>%rename(crit_think = TC199Q07HA) %>%group_by(CNT) %>%mutate(teachers=n()) %>%group_by(CNT, crit_think) %>%summarise(n =n(),per =n()/unique(teachers)) %>%arrange(desc(per)) %>%filter(crit_think =="A lot")# interestingly the highest performing countries also # have some of the lowest scores in helping children # think critically. To plot this:left_join(crit_thinking, PISA_2022 %>%group_by(CNT) %>%summarise(maths =mean(PV1MATH))) %>%ggplot(aes(x=per, y=maths)) +geom_point() +geom_smooth()
Explore the data on use of technology in the classroom TC169____